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Tools/Software used: C/C++/Java

1. Write program for Mono alphabetic cipher.
2. Implementation of Play Fair cipher.
3. Implementation of Vigenere cipher (Polyalphabetic substitution).
4. Implementation of Hill cipher.
5. Implementation of Gauss cipher.
6. Implementation of Rail Fence cipher.
7. Implementation of S-DES algorithm for data encryption.
8. Implement RSA asymmetric (public key and private key)-Encryption. 

Encryption key (e, n) & (d,n)
9. Generate digital signature using Hash code.
10. Generate digital signature using MAC code.
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BCS3702 Network Security and Cryptography 

Course Objective:

1. Have a fundamental understanding of the objectives of cryptography and 
network security

2. Getting familiar with the cryptographic techniques that provide information 
and network security

3. To know the different types of algorithms of exchanging information in a 
secret way.

4. To know the possible threats which can breach the secure communication

Learning Outcome:

At the end of the course, the student should be able to:

1. Understanding cryptography and network security concepts and applications
2. Apply security principals to system design and Real time Scenarios.
3. Identify and investigate network security threats
4. Analysis of network traffic and security threats
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Course Contents:

Module Course Topics Total 
Hours Credits

I

Introduction to Cryptography and Symmetric 
Ciphers
Security Attacks: Security Services and mechanism; 
Classical encryption techniques: Substitution ciphers 
and Transposition ciphers, Steganography, 
Cryptanalysis;
Modern Block Ciphers: Stream and Block Cipher, 
Block Cipher Principles, Block Cipher Modes of 
Operations; Shannon’s theory of Confusion and 
Diffusion; Fiestal structure; Data encryption 
standard(DES); Strength of DES; Idea of differential 
cryptanalysis; Triple DES; Symmetric Key 
Distribution; Finite Fields: Introduction to groups, 
rings and fields, Modular Arithmetic, Euclidean
Algorithm, Finite Fields of the form GF(p).

30
Hours 1

II

Basics of Number Theory and Public key 
Cryptography
Introduction to Number Theory: Prime and Relative 
Prime Numbers, Fermat’s and Euler’s theorem, 
Testing for Primality, Chinese Remainder theorem, 
Discrete Logarithms; Public Key Cryptography: 
Principles of Public-Key Cryptography, RSA 
Algorithm, Security of RSA; Key Management:
Deffie-Hellman Key Exchange.

30
Hours 1

III

Hash Functions and Digital Signatures
Message Authentication; Hash Functions; Secure 
Hash Functions; Security of Hash functions and 
MACs; Digital Signatures; Digital Signature 
Standards (DSS); Proof of digital signature algorithm; 
Advanced Encryption Standard (AES) encryption and
decryption.

30
Hours 1

IV

Network and System Security

Authentication Applications: Kerberos, X.509 
Certificates; Electronic Mail Security: Pretty Good 
Privacy, S/MIME; IP Security: IP Security 
Architecture, Authentication Header, Encapsulating 
security payloads, Combining Security Associations; 
Web Security: Secure Socket Layer and Transport 
Layer Security, Secure Electronic transaction; 
Intruder; Viruses; Firewalls.

30
Hours 1
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Text/Reference Books:

1. William Stallings, “Cryptography and Network Security: Principals and 
Practice”, Pearson Education.
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2. Behrouz A. Frouzan: “Cryptography and Network Security”, Tata McGraw- 
Hill

3. Bruce Schiener, “Applied Cryptography”. John Wiley & Sons
4. Bernard Menezes, “Network Security and Cryptography”, Cengage Learning.
5. Atul Kahate, “Cryptography and Network Security”, Tata McGraw-Hill



UNIT - I 

 

 

INTRODUCTION 

Computer data often travels from one computer to another, leaving the safety of its 

protected physical surroundings. Once the data is out of hand, people with bad intention could 

modify or forge your data, either for amusement or for their own benefit. 

Cryptography can reformat and transform our data, making it safer on its trip between 

computers. The technology is based on the essentials of secret codes, augmented by modern 

mathematics that protects our data in powerful ways. 

• Computer Security - generic name for the collection of tools designed to protect data and to 

thwart hackers 

• Network Security - measures to protect data during their transmission 

 

• Internet Security - measures to protect data during their transmission over a collection of 

interconnected networks 

 

Security Attacks, Services and Mechanisms 

To assess the security needs of an organization effectively, the manager responsible for 

security needs some systematic way of defining the requirements for security and characterization 

of approaches to satisfy those requirements. One approach is to consider three aspects of 

information security: 

Security attack – Any action that compromises the security of information owned by an 

organization. 

Security mechanism – A mechanism that is designed to detect, prevent or recover from a 

security attack. 

Security service – A service that enhances the security of the data processing systems and the 

information transfers of an organization. The services are intended to counter security attacks and 

they make use of one or more security mechanisms to provide the service. 



Basic Concepts 

Cryptography The art or science encompassing the principles and methods of transforming an 

intelligible message into one that is unintelligible, and then retransforming that message back to its 

original form 

Plaintext The original intelligible message 
 

Cipher text The transformed message 
 

Cipher An algorithm for transforming an intelligible message into one that is unintelligible by 

transposition and/or substitution methods 

Key Some critical information used by the cipher, known only to the sender& receiver 
 

Encipher (encode) The process of converting plaintext to cipher text using a cipher and a key 
 

Decipher (decode) the process of converting cipher text back into plaintext using a cipher and a 

key 

Cryptanalysis The study of principles and methods of transforming an unintelligible message 

back into an intelligible message without knowledge of the key. Also called code breaking 

Cryptology Both cryptography and cryptanalysis 
 

Code An algorithm for transforming an intelligible message into an unintelligible one using a 

code-book 

 
Cryptography 

Cryptographic systems are generally classified along 3 independent dimensions: 

Type of operations used for transforming plain text to cipher text 

All the encryption algorithms are based on two general principles: substitution, in which each 

element in the plaintext is mapped into another element, and transposition, in which 

elements in the plaintext are rearranged. 

The number of keys used 

If the sender and receiver uses same key then it is said to be symmetric key (or) 

single key (or) conventional encryption. 

If the sender and receiver use different keys then it is said to be public key encryption. 

The way in which the plain text is processed 

A block cipher processes the input and block of elements at a time, producing output block for 

each input block. 



A stream cipher processes the input elements continuously, producing output element one at a 

time, as it goes along. 

 

 
Cryptanalysis 

The process of attempting to discover X or K or both is known as cryptanalysis. The 

strategy used by the cryptanalysis depends on the nature of the encryption scheme and the 

information available to the cryptanalyst. 

There are various types of cryptanalytic attacks based on   the   amount   of 

information known to the cryptanalyst. 

Cipher text only – A copy of cipher text alone is known to the cryptanalyst. 

Known plaintext – The cryptanalyst has a copy of the cipher text and the corresponding 

plaintext. 

Chosen plaintext – The cryptanalysts gains temporary access to the encryption machine. They 

cannot open it to find the key, however; they can encrypt a large number of suitably chosen 

plaintexts and try to use the resulting cipher texts to deduce the key. 

 

Chosen cipher text – The cryptanalyst obtains temporary access   to   the decryption 

machine, uses it to decrypt several string of symbols, and tries to use the results to deduce the 

key. 

 

STEGANOGRAPHY 

A plaintext message may be hidden in any one of the two ways. The methods of 

steganography conceal the existence of the   message,   whereas   the   methods   of 

cryptography render the message unintelligible to outsiders by various transformations of the text. 

A simple form of steganography, but one that is time consuming to construct is one in 

which an arrangement of words or letters within an apparently innocuous text spells out the 

real message. 

e.g., (i) the sequence of first letters of each word of the overall message spells out the real 

(Hidden) message. 

(ii) Subset of the words of the overall message is used to convey the hidden 

message. 

Various other techniques have been used historically, some of them are 

Character marking – selected letters of printed or typewritten text are overwritten in pencil. The 



marks are ordinarily not visible unless the paper is held to an angle to bright light. 

Invisible ink – a number of substances can be used for writing but leave no visible trace until heat 

or some chemical is applied to the paper. 

Pin punctures – small pin punctures on selected letters are ordinarily not visible unless the 

paper is held in front of the light. Typewritten correction ribbon – used between the lines typed 

with a black ribbon, the results of typing with the correction tape are visible only under a strong 

light. 

Drawbacks of steganography 

Requires a lot of overhead to hide a relatively few bits of information. 

Once the system is discovered, it becomes virtually worthless. 

SECURITY SERVICES 

The classification of security services are as follows: 

Confidentiality: Ensures that the information in a computer system a n d transmitted 

information are accessible only for reading by authorized parties. 

E.g. Printing, displaying and other forms of disclosure. 

Authentication: Ensures that the origin of a message or electronic document is correctly 

identified, with an assurance that the identity is not false. 

Integrity: Ensures that only authorized parties are able to modify computer system assets and 

transmitted   information.   Modification   includes    writing, changing status, deleting, creating 

and delaying or replaying of transmitted messages. 

Non repudiation: Requires that neither the sender nor the receiver of a message be able to deny 

the transmission. 

Access control: Requires that access to information resources may be controlled by or the target 

system. 

Availability: Requires that computer system assets be available to authorized parties when 

needed. 

 

SECURITY MECHANISMS 

One of the most specific security mechanisms in use is cryptographic techniques. 

Encryption or encryption-like transformations of information are the most common means of 

providing security. Some of the mechanisms are 

1 Encipherment 



2 Digital Signature 

 

3 Access Control 

 

SECURITY ATTACKS 

There are four general categories of attack which are listed below. 
 

Interruption 

An asset of the system is destroyed or becomes unavailable or unusable. This is an attack on 

availability e.g., destruction of piece of hardware, cutting of a communication line or 

Disabling of file management system. 

 
 

Interception 

 
An unauthorized   party   gains   access   to   an   asset.   This   is   an   attack   on confidentiality. 

Unauthorized party could   be   a   person,   a   program   or   a 

computer.e.g., wire tapping to capture data in the network, illicit copying of files 

 

 

 

 
Sender Receiver 

 

Eavesdropper or forger 

 

 

Modification 

An unauthorized party not only gains access to but tampers with an asset. This is an attack on 

integrity. e.g., changing values in data file, altering a program, modifying the contents of 

messages being transmitted in a network. 
 

 

 

 

 

 

 

Sender Receiver 



Eavesdropper or forger 

 

 

 
Fabrication 

An unauthorized party inserts counterfeit objects into the system. This is an attack on authenticity. 

e.g., insertion of spurious message in a network or addition of records to a file. 

 

 
 

Sender 
 

 

Eavesdropper or forger 
 

 

Cryptographic Attacks 

 
Passive Attacks 

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal 

of the opponent is to obtain information that is being transmitted. Passive 

attacks are of two types: 

Release of message contents: A telephone conversation, an e-mail message and a transferred file 

may contain sensitive or confidential information. We would like to prevent the opponent from 

learning the contents of these transmissions. 

Traffic analysis: If we had encryption protection in place, an opponent might still be able to 

observe the pattern of the message. The opponent could determine the location and identity of 

communication hosts and could observe the frequency and length of messages being 

exchanged. This information might be useful in guessing the nature of communication that was 

taking place. 

Passive attacks are very difficult to detect because they do not involve any alteration of data. 

However, it is feasible to prevent the success of these attacks. 

 

 
Receiver 



Active attacks 

 
These attacks involve some modification of the data stream or the creation of a false stream. These 

attacks can be classified in to four categories: 

 
Masquerade – One entity pretends to be a different entity. 

Replay – involves passive capture of a data unit and its subsequent transmission to produce an 

unauthorized effect. 

Modification of messages – Some portion of message is altered or the messages are delayed or 

recorded, to produce an unauthorized effect. 

Denial of service – Prevents or inhibits the normal use or management of communication 

facilities. Another form of service denial is the disruption of an entire network, either by disabling 

the network or overloading it with messages so as to degrade performance. 

It is quite difficult to prevent active attacks absolutely, because to do so would require physical 

protection of all communication facilities and paths at all times. Instead, the goal is to detect them 

and to recover from any disruption or delays caused by them. 

 
Symmetric and public key algorithms 

Encryption/Decryption methods fall into two categories. 

Symmetric key 

Public key 

In symmetric key algorithms, the encryption and decryption keys are known both to sender 

and receiver. The encryption key is shared and the decryption key is easily calculated from it. 

In many cases, the encryption and decryption keys are the same. 

In public key cryptography, encryption   key   is   made   public,   but   it   is 

computationally infeasible to find the decryption key without the information known to the 

receiver. 

A MODEL FOR NETWORK SECURITY 
 



 

 

 

 

 

 

 

 

 

 

 

 

A message is to be transferred from one party to another across some sort of internet. The two 

parties, who are the principals in this transaction, must cooperate for the exchange to take place. 

A logical information channel is established by defining a route through the internet from source 

to destination and by the cooperative use of communication protocols (e.g., TCP/IP) by the 

two principals. 

Using this model requires us to: 

– design a suitable algorithm for the security transformation 

– generate the secret information (keys) used by the algorithm 

– develop methods to distribute and share the secret information 

– specify a protocol enabling the principals to use the  transformation and secret information 

for a security service 

 

MODEL FOR NETWORK ACCESS SECURITY 
 

 

Using this model requires us to: 



– select appropriate gatekeeper functions to identify users 

– implement security controls to ensure only authorized users access designated 

information or resources 

• Trusted computer systems can be used to implement this model 

 

 
CONVENTIONAL ENCRYPTION 

• Referred conventional / private-key / single-key 

• Sender and recipient share a common key 

 

All classical encryption algorithms are private-key was only type prior to invention of public- 

key in 1970‟plaintext - the original message 

Some basic terminologies used: 

• cipher text - the coded message 

• Cipher - algorithm for transforming plaintext to cipher text 

• Key - info used in cipher known only to sender/receiver 

• encipher (encrypt) - converting plaintext to cipher text 

• decipher (decrypt) - recovering cipher text from plaintext 

• Cryptography - study of encryption principles/methods 
 

• Cryptanalysis (code breaking) - the study of principles/ methods of deciphering cipher text 

without knowing key 

• Cryptology - the field of both cryptography and cryptanalysis 
 

 

 



 

 

 

 

 

 

 
 

Here the original message, referred to as plaintext, is converted into apparently random 

nonsense, referred to as cipher text. The encryption process consists of an algorithm and a key. 

The key is a value independent of the plaintext. Changing the key changes the output of the 

algorithm. Once the cipher text is produced, it may be transmitted. Upon reception, the 

cipher text can be transformed back to the original plaintext by using a decryption algorithm 

and the same key that was used for encryption. The security depends on several factors. First, the 

encryption algorithm must be powerful enough that it is impractical to decrypt a message on 

the basis of cipher text alone. Beyond that, the security depends on the secrecy of the key, 

not the secrecy of the algorithm. 

• Two requirements for secure use of symmetric encryption: 

– A strong encryption algorithm 

– A secret key known only to sender / receiver 

Y = EK(X) 

X = DK(Y) 

• assume encryption algorithm is known 

• implies a secure channel to distribute key 

A source produces a message in plaintext, X = [X1, X2… XM] where M are the number of 

letters in the message. A key of the form K = [K1, K2… KJ] is generated. If the key is 

generated at the source, then it must be provided to the destination by means of some secure 

channel. 

 
With the message X and the encryption key K as input, the encryption algorithm forms the 

cipher text Y = [Y1, Y2, YN]. This can be expressed as 

Y = EK(X) 

The intended receiver, in possession of the k e y , is able to invert the 

transformation: 

X = DK(Y) 

An opponent, observing Y but not having access to K or X, may attempt to recover 

X or K or both. It is assumed that the opponent knows the encryption and decryption algorithms. 



If the opponent is interested in only this particular message, then the focus of effort is to recover 

X by generating a plaintext estimate. Often if the opponent is interested in being able to read 

future messages as well, in which case an attempt is made to recover K by generating an estimate. 

 

 
CLASSICAL ENCRYPTION TECHNIQUES 

There are two basic building blocks of all encryption techniques: substitution and 

transposition. 

SUBSTITUTION TECHNIQUES 

A substitution technique is one in which the letters of plaintext are replaced by other letters or by 

numbers or symbols. If the plaintext is viewed as a sequence of bits, then substitution involves 

replacing plaintext bit patterns with cipher text bit patterns. 

 
Caesar cipher (or) shift cipher 

The earliest known use of a substitution cipher and the simplest was by Julius Caesar. The 

Caesar cipher involves replacing each letter of the alphabet with the letter standing 3 places 

further down the alphabet. 

e.g., plain text : pay more money 

Cipher text: SDB PRUH PRQHB 

Note that the alphabet is wrapped around, so that letter following „z‟ is „a‟. 

For each plaintext letter p, substitute the cipher text letter c such that 

C = E(p) = (p+3) mod 26 

A shift may be any amount, so that general Caesar algorithm is 

C = E (p) = (p+k) mod 26 

Where k takes on a value in the range 1 to 25. The decryption algorithm is simply 

P = D(C) = (C-k) mod 26 

Playfair cipher 

The best known multiple letter encryption cipher is the playfair, which treats digrams 

in the plaintext as single units and translates these units into cipher text digrams. The playfair 



algorithm is based on the use of 5x5 matrix of letters constructed using a keyword. Let the 

keyword be „monarchy‟. The matrix is constructed by filling in the letters of the keyword 

(minus duplicates) from left to right and from top to bottom, and then filling in the remainder of 

the matrix with the remaining letters in alphabetical order. 

The letter „i‟ and „j‟ count as one letter. Plaintext is encrypted two letters at a time 

According to the following rules: 

Repeating plaintext letters that would fall in the same pair are separated with a 

Filler letter such as „x‟. 

Plaintext letters that fall in the same row of the matrix are each replaced by the letter to the 

right, with the first element of the row following the last. 

Plaintext letters that fall in the same column are replaced by the letter beneath, with the top 

element of the column following the last. 

Otherwise, each plaintext letter is replaced by the letter that lies in its own row 

And the column occupied by the other plaintext letter. 

 
 

M O N A R 

C H Y B D 

E F G I/J K 

L P Q S T 

U V W X Z 

 

Plaintext = meet me at the school house 

Splitting two letters as a unit => me et me at th es ch o x ol ho us ex 

Corresponding cipher text => CL KL CL RS PD IL HY AV MP HF XL IU 

Strength of playfair cipher 

Playfair cipher is a great advance over simple mono alphabetic ciphers. 

Since there are 26 letters, 26x26 = 676 diagrams are possible, so identification of individual 

diagram is more difficult. 

 
1.15.1.3 Polyalphabetic ciphers 



Another way to improve on the simple monoalphabetic technique is to use different 

monoalphabetic substitutions as one proceeds through the plaintext message. The general name 

for this approach is polyalphabetic cipher. All the techniques have the following features in 

common. 

A set of related monoalphabetic substitution rules are used 

A key determines which particular rule is chosen for a given transformation. 

 

Vigenere cipher 

In this scheme, the set of related monoalphabetic substitution rules consisting of 

26 caesar ciphers with shifts of 0 through 25. Each cipher is denoted by a key letter. e.g., Caesar 

cipher with a shift of 3 is denoted by the key value 'd‟ (since a=0, b=1, c=2 and so on). To 

aid in understanding the scheme, a matrix known as vigenere tableau is 

Constructed 

Each of the 26 ciphers is laid out horizontally, with the key letter for each cipher to its 

left. A normal alphabet for the plaintext runs  across the top. The process of 

 

 PLAIN TEXT 

K 

E 

Y 

 
L 

E 

T 

T 

E 

R 

S 

 a b c d e f g h i j k … x y z 

a A B C D E F G H I J K … X Y Z 

b B C D E F G H I J K L … Y Z A 

c C D E F G H I J K L M … Z A B 

d D E F G H I J K L M N … A B C 

e E F G H I J K L M N O … B C D 

f F G H I J K L M N O P … C D E 

g G H I J K L M N O P Q … D E F 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

… : 

: 

: 

: 

: 

: 

x X Y Z A B C D E F G H …   W 

y Y Z A B C D E F G H I …   X 

z Z A B C D E F G H I J …   Y 



Encryption is simple: Given a key letter X and a plaintext letter y, the cipher text is at the 

intersection of the row labeled x and the column labeled y; in this case, the ciphertext is 

V. 

To encrypt a message, a key is needed that is as long as the message. Usually, the key is a 

repeating keyword. 

e.g., key = d e c e p t i v e d e c e p t i v e d e c e p t i v e PT = w e a r e d i s c o v e r e d s a 

v e y o u r s e l f CT = ZICVTWQNGRZGVTWAVZHCQYGLMGJ 

Decryption is equally simple. The key letter again identifies the row. The position of the 

cipher text letter in that row determines the column, and the plaintext letter is at the top of that 

column. 

Strength of Vigenere cipher 

o There are multiple cipher text letters for each plaintext letter. 

o Letter frequency information is obscured. 

 
One Time Pad Cipher 

It is an unbreakable cryptosystem. It represents the message as a sequence of 0s and 1s. 

this can be accomplished by writing all numbers in binary, for example, or by using ASCII. The 

key is a random sequence of 0‟s and 1‟s of same length as the message. Once a key is used, it is 

discarded and never used again. The system can be expressed as 

Follows: 

Ci = Pi Ki Ci - i
th 

binary digit of cipher text Pi - i
th 

binary digit of 

plaintext Ki - i
th 

binary digit of key 

Exclusive OR operation 

Thus the cipher text is generated by performing the bitwise XOR of the plaintext and the key. 

Decryption uses the same key. Because of the properties of XOR, decryption simply involves the 

same bitwise operation: 

Pi = Ci    Ki 

 
e.g.,    plaintext = 0 0 1 0 1 0 0 1 

Key        = 1 0 1 0 1 1 0 0 



------------------- ciphertext = 1 0 0 0 0 1 0 1 

 
Advantage: 

Encryption method is completely unbreakable for a ciphertext only attack. 

Disadvantages 

It requires a very long key which is expensive to produce and expensive to transmit. 

Once a key is used, it is dangerous to reuse it for a second message; any knowledge 

on the first message would give knowledge of the second. 

 
TRANSPOSITION TECHNIQUES 

All the techniques examined so far involve the substitution of a cipher text symbol 

for a plaintext symbol. A very different kind of mapping is achieved by performing some sort of 

permutation on the plaintext letters. This technique is referred to as a transposition cipher. 

 

Rail fence 

is simplest of such cipher, in which the plaintext is written down as a sequence of diagonals and 

then read off as a sequence of rows. 

Plaintext = meet at the school house 

To encipher this message with a rail fence of depth 2, we write the message as follows: 

m e a t e c o l o s 

e t t h   s   h   o   h   u   e 

The encrypted message is 

MEATECOLOSETTHSHOHUE 

 
Row Transposition Ciphers- 

A more complex scheme is to write the message in a rectangle, row by row, and read the 

message off, column by column, but permute the order of the columns. The order of columns then 

becomes the key of the algorithm. 

e.g., plaintext = meet at the school house 
 
 

Key = 4 3 1 2 5 6 7 

PT   = m e e t a t t 



h e s c h o o 

l h o u s e 

CT = ESOTCUEEHMHLAHSTOETO 

A pure transposition cipher is easily recognized because it has the same letter frequencies 

as the original plaintext. The transposition cipher can be made significantly more secure by 

performing more than one stage of transposition. The result is more complex permutation that is 

not easily reconstructed. 

 

 
Feistel cipher structure 

 
The input to the encryption algorithm are a plaintext block of length 2w bits and a key K. 

the plaintext block is divided into two halves L0 and R0. The two halves of the data pass 

through „n‟ rounds of processing and then combine to produce the ciphertext block. Each round „i‟ 

has inputs Li-1 and Ri-1, derived from the previous round, as well as the subkey Ki, derived from 

the overall key K. in general, the subkeys Ki are different from K and from each other. 

All rounds have the same structure. A substitution is performed on the left half of the data (as 

similar to S-DES). This is done by applying a round function F to the right half of the data and 

then taking the XOR of the output of that function and the left half of the data. The round function 

has the same general structure for each round but is parameterized by the round sub key ki. 

Following this substitution, a permutation is performed that consists of the interchange of the 

two halves of the data. This structure is a particular form of the substitution-permutation network. 

The exact realization of a Feistel network depends on the choice of the following parameters and 

design features: 

Block size - Increasing size improves security, but slows cipher 

Key size - Increasing size improves security, makes exhaustive key searching harder, but may 

slow cipher 

Number of rounds - Increasing number improves security, but slows cipher 

Subkey generation - Greater complexity can make analysis harder, but slows cipher 

Round function - Greater complexity can make analysis harder, but slows cipher 

Fast software en/decryption & ease of analysis - are more recent concerns for practical use 

and testing. 



 
 

 

 

Fig: Classical Feistel Network 



 

Fig: Feistel encryption and decryption 

 

The process of decryption is essentially the same as the encryption process. The rule is as follows: 

use the cipher text as input to the algorithm, but use the subkey ki in reverse order. i.e., kn in 

the first round, kn-1 in second round and so on. For clarity, we use the notation LEi and REi for 

data traveling through the decryption algorithm. The diagram below indicates that, at each 

round, the intermediate value of the decryption process is same (equal) to the corresponding value 

of the encryption process with two halves of the value swapped. 

 
i.e., REi || LEi (or) equivalently RD16-i || LD16-i 



 

After the last iteration of the encryption process, the two halves of the output   are 

swapped, so that the cipher text is RE16 || LE16. The output of that round is the cipher text. Now 

take the cipher text and use it as input to the same algorithm. The input to the first round is RE16 

|| LE16, which is equal to the 32-bit swap of the output of the sixteenth round of the 

encryption process. 

Now we will see how the output of the first round of the decryption process is equal to a 

32-bit swap of the input to the sixteenth round of the encryption process. First consider the 

encryption process, 

LE16 = RE15 

RE16 = LE15 F (RE15, K16) On the decryption side, 

LD1 =RD0 = LE16 =RE15 

RD1 = LD0 F (RD0, K16) 

= RE16 F (RE15, K16) 

= [LE15 F (RE15, K16)] F (RE15, K16) 

= LE15 

Therefore, LD1 = RE15 

RD1 = LE15 In general, for the i
th 

iteration of the encryption algorithm, LEi = REi-1 

REi = LEi-1 F (REi-1, Ki) 

Finally, the output of the last round of the decryption process is RE0 || LE0. A 32-bit swap 

recovers the original plaintext. 
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Chapter 1 – Introduction

The art of war teaches us to rely not on the 

likelihood of the enemy's not coming, but 

on our own readiness to receive him; not 

on the chance of his not attacking, but 

rather on the fact that we have made our 

position unassailable. 

—The Art of War, Sun Tzu



Background

• Information Security requirements have 
changed in recent times

• traditionally provided by physical and 
administrative mechanisms

• computer use requires automated tools to 
protect files and other stored information

• use of networks and communications links 
requires measures to protect data during 
transmission



Definitions

• Computer Security - generic name for 

the collection of tools designed to protect 

data and to thwart hackers

• Network Security - measures to protect 

data during their transmission

• Internet Security - measures to protect 

data during their transmission over a 

collection of interconnected networks



Aim of Course

• our focus is on Internet Security

• consists of measures to deter, prevent, 

detect, and correct security violations that 

involve the transmission of information



Services, Mechanisms, Attacks

• need systematic way to define 

requirements

• consider three aspects of information 

security:

– security attack

– security mechanism

– security service

• consider in reverse order



Security Service

– is something that enhances the security of the 
data processing systems and the information 
transfers of an organization

– intended to counter security attacks

– make use of one or more security 
mechanisms to provide the service

– replicate functions normally associated with 
physical documents

• eg have signatures, dates; need protection from 
disclosure, tampering, or destruction; be notarized 
or witnessed; be recorded or licensed



Security Mechanism

• a mechanism that is designed to detect, 

prevent, or recover from a security attack

• no single mechanism that will support all 

functions required

• however one particular element underlies 

many of the security mechanisms in use: 

cryptographic techniques

• hence our focus on this area



Security Attack

• any action that compromises the security 

of information owned by an organization

• information security is about how to 

prevent attacks, or failing that, to detect 

attacks on information-based systems

• have a wide range of attacks

• can focus of generic types of attacks

• note: often threat & attack mean same



OSI Security Architecture

• ITU-T X.800 Security Architecture for OSI

• defines a systematic way of defining and 

providing security requirements

• for us it provides a useful, if abstract, 

overview of concepts we will study



Security Services

• X.800 defines it as: a service provided by 
a protocol layer of communicating open 
systems, which ensures adequate security 
of the systems or of data transfers

• RFC 2828 defines it as: a processing or 
communication service provided by a 
system to give a specific kind of protection 
to system resources

• X.800 defines it in 5 major categories



Security Services (X.800)

• Authentication - assurance that the 
communicating entity is the one claimed

• Access Control - prevention of the 
unauthorized use of a resource

• Data Confidentiality –protection of data from 
unauthorized disclosure

• Data Integrity - assurance that data received is 
as sent by an authorized entity

• Non-Repudiation - protection against denial by 
one of the parties in a communication



Security Mechanisms (X.800)

• specific security mechanisms:

– encipherment, digital signatures, access 

controls, data integrity, authentication 

exchange, traffic padding, routing control, 

notarization

• pervasive security mechanisms:

– trusted functionality, security labels, event 

detection, security audit trails, security 

recovery



Classify Security Attacks as

• passive attacks - eavesdropping on, or 

monitoring of, transmissions to:

– obtain message contents, or

– monitor traffic flows

• active attacks – modification of data stream to:

– masquerade of one entity as some other

– replay previous messages

– modify messages in transit

– denial of service



Model for Network Security



Model for Network Security

• using this model requires us to: 

– design a suitable algorithm for the security 
transformation 

– generate the secret information (keys) used 
by the algorithm 

– develop methods to distribute and share the 
secret information 

– specify a protocol enabling the principals to 
use the transformation and secret information 
for a security service 



Model for Network Access Security



Model for Network Access Security

• using this model requires us to: 

– select appropriate gatekeeper functions to 

identify users 

– implement security controls to ensure only 

authorised users access designated 

information or resources 

• trusted computer systems can be used to 

implement this model 



Summary

• have considered:

– computer, network, internet security def’s

– security services, mechanisms, attacks

– X.800 standard

– models for network (access) security



Chapter 3 – Block Ciphers and the 

Data Encryption Standard



Last Chapter

• have considered:

– terminology

– classical cipher techniques 

– substitution ciphers

• cryptanalysis using letter frequencies

– transposition ciphers



Modern Block Ciphers

• will now look at modern block ciphers

• one of the most widely used types of 

cryptography algorithms 

• provide strong secrecy and/or 

authentication services

• in particular will introduce DES (Data 

Encryption Standard)



Block vs Stream Ciphers

• block ciphers process messages into 

blocks, each of which is then en/decrypted 

• like a substitution on very big characters

– 64-bits or more 

• stream ciphers process messages a bit or 

byte at a time when en/decrypting

• many current ciphers are block ciphers

• hence are focus of course



Block Cipher Principles

• block ciphers look like an extremely large 
substitution 

• would need table of 264 entries for a 64-bit block 

• arbitrary reversible substitution cipher for a large 
block size is not practical 
– 64-bit general substitution block cipher, key size 264!

• most symmetric block ciphers are based on a 
Feistel Cipher Structure

• needed since must be able to decrypt ciphertext 
to recover messages efficiently



C. Shannon and Substitution-

Permutation Ciphers

• in 1949 Shannon introduced idea of substitution-

permutation (S-P) networks

– modern substitution-transposition product cipher 

• these form the basis of modern block ciphers 

• S-P networks are based on the two primitive 

cryptographic operations we have seen before: 

– substitution (S-box)

– permutation (P-box) (transposition)

• provide confusion and diffusion of message 



Diffusion and Confusion

• Introduced by Claude Shannon to thwart 

cryptanalysis based on statistical analysis

– Assume the attacker has some knowledge of 

the statistical characteristics of the plaintext

• cipher needs to completely obscure 

statistical properties of original message

• a one-time pad does this



Diffusion and Confusion

• more practically Shannon suggested 

combining elements to obtain:

• diffusion – dissipates statistical structure 

of plaintext over bulk of ciphertext

• confusion – makes relationship between 

ciphertext and key as complex as possible



Feistel Cipher Structure

• Horst Feistel devised the feistel cipher

– implements Shannon’s substitution-

permutation network concept

• partitions input block into two halves

– process through multiple rounds which

– perform a substitution on left data half

– based on round function of right half & subkey

– then have permutation swapping halves



Feistel Cipher Structure



Feistel Cipher

• n sequential rounds

• A substitution on the left half Li

– 1. Apply a round function F to the right half Ri 

and 

– 2. Take XOR of the output of (1) and Li

• The round function is parameterized by 

the subkey Ki

– Ki are derived from the overall key K



Feistel Cipher Design Principles

• block size
– increasing size improves security, but slows cipher 

• key size
– increasing size improves security, makes exhaustive key 

searching harder, but may slow cipher 

• number of rounds
– increasing number improves security, but slows cipher 

• subkey generation
– greater complexity can make analysis harder, but slows cipher 

• round function
– greater complexity can make analysis harder, but slows cipher 

• fast software en/decryption & ease of analysis
– are more recent concerns for practical use and testing



Feistel Cipher Decryption



Data Encryption Standard (DES)

• most widely used block cipher in world 

• adopted in 1977 by NBS (now NIST)

– as FIPS PUB 46

• encrypts 64-bit data using 56-bit key

• has widespread use



DES History

• IBM developed Lucifer cipher

– by team led by Feistel

– used 64-bit data blocks with 128-bit key

• then redeveloped as a commercial cipher 
with input from NSA and others

• in 1973 NBS issued request for proposals 
for a national cipher standard

• IBM submitted their revised Lucifer which 
was eventually accepted as the DES



DES Design Controversy

• although DES standard is public

• was considerable controversy over design 

– in choice of 56-bit key (vs Lucifer 128-bit)

• subsequent events and public analysis 

show in fact design was appropriate

• DES has become widely used, especially 

in financial applications



DES Encryption



Initial Permutation IP

• first step of the data computation 

• IP reorders the input data bits 

• quite regular in structure 

– see text Table 3.2

• example:

IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)



DES Round Structure

• uses two 32-bit L & R halves

• as for any Feistel cipher can describe as:
Li = Ri–1

Ri = Li–1 xor F(Ri–1, Ki)

• takes 32-bit R half and 48-bit subkey and:
– expands R to 48-bits using Expansion Permutation E 

(Table 3.2 c.)

– adds to subkey

– passes through 8 S-boxes to get 32-bit result

– finally permutes this using 32-bit Permutation 
Function P (Table 3.2 d)



The round function F(R,K)



Substitution Boxes S

• 8 S-boxes (Table 3.3 )

• Each S-Box mapps 6 to 4 bits 

– outer bits 1 & 6 (row bits) select the row

– inner bits 2-5 (col bits) select the column

– For example, in S1, for input 011001, 

• the row is 01 (row 1) 

• the column is 1100 (column 12). 

• The value in row 1, column 12 is 9

• The output is 1001.

• result is 8 X 4 bits, or 32 bits



DES Key Schedule

• forms subkeys used in each round

• 1. initial permutation of the key PC1 (Table 3.4b)

• 2. divide the 56-bits in two 28-bit halves 

• 3. at each round

– 3.1. Left shift each half (28bits) separately either 1 or 

2 places based on the left shift schedule (Table 3.4d)

• Shifted values will be input for next round

– 3.2. Combine two halfs to 56 bits, permuting them by 

PC2 (Table 3.4c) for use in function f 

• PC2 takes 56-bit input, outputs 48 bits



DES Decryption

• decrypt must unwind steps of data computation 

• with Feistel design, do encryption steps again 

• using subkeys in reverse order (SK16 … SK1)

• note that IP undoes final FP step of encryption 

• 1st round with SK16 undoes 16th encrypt round

• ….

• 16th round with SK1 undoes 1st encrypt round 

• then final FP undoes initial encryption IP 

• thus recovering original data value 



DES Decryption (reverse 

encryption)



Avalanche Effect 

• key desirable property of encryption alg

• DES exhibits strong avalanche 

• where a change of one input or key bit 

results in changing approx half output bits



Strength of DES – Key Size

• 56-bit keys have 256 = 7.2 x 1016 values

• brute force search looks hard

• recent advances have shown is possible

– in 1997 on Internet in a few months 

– in 1998 on dedicated hardware (EFF) in a few 
days 

– in 1999 above combined in 22hrs!

• still must be able to recognize plaintext

• now considering alternatives to DES



Strength of DES – Timing Attacks

• attacks actual implementation of cipher

• use knowledge of consequences of 

implementation to derive knowledge of 

some/all subkey bits

• specifically use fact that calculations can 

take varying times depending on the value 

of the inputs to it



Strength of DES – Analytic Attacks

• now have several analytic attacks on DES

• these utilise some deep structure of the cipher 
– by gathering information about encryptions 

– can eventually recover some/all of the sub-key bits 

– if necessary then exhaustively search for the rest 

• generally these are statistical attacks

• include
– differential cryptanalysis 

– linear cryptanalysis 

– related key attacks 



Differential Cryptanalysis

• one of the most significant recent (public) 

advances in cryptanalysis 

• known in 70's with DES design

• Murphy, Biham & Shamir published 1990

• powerful method to analyse block ciphers 

• used to analyse most current block ciphers 

with varying degrees of success

• DES reasonably resistant to it



Differential Cryptanalysis

• a statistical attack against Feistel ciphers 

• uses cipher structure not previously used 

• design of S-P networks has output of 

function f influenced by both input & key

• hence cannot trace values back through 

cipher without knowing values of the key 

• Differential Cryptanalysis compares two 

related pairs of encryptions



Differential Cryptanalysis 

Compares Pairs of Encryptions 

• Differential cryptanalysis is complex

• with a known difference in the input 

• searching for a known difference in output



Differential Cryptanalysis

• have some input difference giving some 

output difference with probability p

• if find instances of some higher probability 

input / output difference pairs occurring

• can infer subkey that was used in round

• then must iterate process over many 

rounds



Differential Cryptanalysis

• perform attack by repeatedly encrypting plaintext pairs 
with known input XOR until obtain desired output XOR 

• when found
– if intermediate rounds match required XOR have a right pair

– if not then have a wrong pair

• can then deduce keys values for the rounds
– right pairs suggest same key bits

– wrong pairs give random values 

• larger numbers of rounds makes it more difficult 

• Attack on full DES requires an effort on the order of 247, 
requiring 247 chosen plaintexts to be encrypted 



Linear Cryptanalysis

• another recent development 

• also a statistical method 

• based on finding linear approximations to 

model the transformation of DES

• can attack DES with 247 known plaintexts, 

still in practise infeasible



Criteria for S-Boxes

• No output of any S-Box is too close to a linear 
function of the input bits

• Each row of an S-Box includes all 16 possible 
output bit combinations

• If two inputs to an S-box differ in one bit, the 
output bits differ in at least two bits

• If two inputs differ is the two middle bits, outputs 
must differ at least two bits

• Defend against differential analysis and provide 
good confusion properties



Block Cipher Design Principles

• basic principles still like Feistel in 1970’s

• number of rounds

– more is better, makes exhaustive search best 

attack

– 16 rounds: brute force 255

– differential analysis: 255.1



Block Cipher Design Principles

• function F:

– provides “confusion”, is nonlinear, avalanche

– Strict Avalanche Criterion (SAC)

• Any output bit i should change with p=1/2 when 

any single input bit j is inverted, for all i,j

• Applies to both S-Boxes and the overall F function 

• key schedule

– No general rule has been discovered

– complex subkey creation, key avalanche



Modes of Operation

• block ciphers encrypt fixed size blocks

• eg. DES encrypts 64-bit blocks, with 56-bit key 

• need way to use in practise, given usually have 

arbitrary amount of information to encrypt 

• four were defined for DES in ANSI standard 

ANSI X3.106-1983 Modes of Use

– DES is the basic building block

• have block and stream modes



Electronic Codebook Book (ECB)

• message is broken into independent blocks 
which are encrypted 

• each block is a value which is substituted, like a 
codebook, hence name 
– Each DES is a very complex 64-bit to 64-bit 

substitution

• each block is encoded independently of the 
other blocks 
Ci = DESK1 (Pi)

• uses: secure transmission of single values
– Repeated input blocks have same output

– Not secure for long transmission



Electronic Codebook Book (ECB)



Advantages and Limitations of ECB

• repetitions in message may show in 
ciphertext 

– if aligned with message block 

– particularly with data such graphics 

– or with messages that change very little, 
which become a code-book analysis problem 

• weakness due to encrypted message 
blocks being independent 

• main use is sending a few blocks of data 



Cipher Block Chaining (CBC) 

• message is broken into blocks 

• but these are linked together in the 
encryption operation 

• each previous cipher blocks is chained 
with current plaintext block, hence name 

• use Initial Vector (IV) to start process 
Ci = DESK1(Pi XOR Ci-1)

C-1 = IV

• uses: bulk data encryption, authentication



Cipher Block Chaining (CBC)



Advantages and Limitations of CBC

• each ciphertext block depends on all message blocks 

• thus a change in the message affects all ciphertext 
blocks after the change as well as the original block 

• need Initial Value (IV) known to sender & receiver 

– however if IV is sent in the clear, an attacker can 
change bits of the first block, and change IV to 
compensate 

– hence either IV must be a fixed value (as in EFTPOS) 
or it must be sent encrypted in ECB mode before rest 
of message



Cipher FeedBack (CFB)

• message is treated as a stream of bits 

• added to the output of the block cipher 

• result is feed back for next stage (hence name) 

• standard allows any number of bit (1,8 or 64 or 
whatever) to be feed back 
– denoted CFB-1, CFB-8, CFB-64 etc 

• is most efficient to use all 64 bits (CFB-64)
Ci = Pi XOR DESK1(Ci-1)

C-1 = IV

• uses: stream data encryption, authentication



Cipher FeedBack (CFB)



Advantages and Limitations of CFB

• appropriate when data arrives in bits/bytes 

• most common stream mode 

• note that the block cipher is used in 

encryption mode at both ends 

• errors propagate for several blocks after 

the error 

– Must use over a reliable network channel



Output FeedBack (OFB)

• message is treated as a stream of bits 

• output of cipher is added to message 

• output is then feed back (hence name) 

• feedback is independent of message 

• can be computed in advance

Ci = Pi XOR Oi

Oi = DESK1(Oi-1)

O-1 = IV

• uses: stream encryption over noisy channels



Output FeedBack (OFB)



Advantages and Limitations of OFB

• used when error feedback a problem or where need to  
encryptions before message is available 

• superficially similar to CFB 

• but feedback is from the output of cipher and is 
independent of message 
– Errors do not propagate

• sender and receiver must remain in sync, and some 
recovery method is needed to ensure this occurs 

• Because the "random" bits are independent of the 
message, they must never be used more than once 
– otherwise the 2 ciphertexts can be combined, cancelling these 

bits)



Counter (CTR)

• a “new” mode, though proposed early on

• encrypts counter value rather than any 

feedback value

• must have a different key & counter value 

for every plaintext block (never reused)

Ci = Pi XOR Oi

Oi = DESK1(i)

• uses: high-speed network encryptions



Counter (CTR)



Advantages and Limitations of CTR

• efficiency

– can do parallel encryptions

– in advance of need

– good for bursty high speed links

• random access to encrypted data blocks

– Do not have to decode from the beginning

• provable security (good as other modes)

• but must ensure never reuse key/counter 
values, otherwise could break (cf OFB)



Summary

• have considered:

– block cipher design principles

– DES

• details

• strength

– Differential & Linear Cryptanalysis

– Modes of Operation 

• ECB, CBC, CFB, OFB, CTR



Chapter 4 – Finite Fields



Introduction

• will now introduce finite fields

• of increasing importance in cryptography

– AES, Elliptic Curve, IDEA, Public Key

• concern operations on “numbers”

– what constitutes a “number”

– the type of operations and the properties

• start with concepts of groups, rings, fields 

from abstract algebra



Group

• a set of elements or “numbers”
– A generalization of usual arithmetic

• obeys: 
– closure: a.b also in G

– associative law: (a.b).c = a.(b.c)

– has identity e: e.a = a.e = a

– has inverses a-1: a.a-1 = e

• if commutative a.b = b.a

– then forms an abelian group

• Examples in P.105



Cyclic Group

• define exponentiation as repeated 
application of operator
– example: a3 = a.a.a

• and let identity be: e=a0

• a group is cyclic if every element is a 
power of some fixed element
– ie b = ak for some a and every b in group

• a is said to be a generator of the group

• Example: positive numbers with addition



Ring

• a set of “numbers” with two operations (addition and 
multiplication) which are:

• an abelian group with addition operation 

• multiplication:
– has closure

– is associative

– distributive over addition: a(b+c) = ab + ac

• In essence, a ring is a set in which we can do addition, 
subtraction [a – b = a + (–b)], and multiplication without 
leaving the set.

• With respect to addition and multiplication, the set of all 
n-square matrices over the real numbers form a ring.



Ring

• if multiplication operation is commutative, 

it forms a commutative ring

• if multiplication operation has an identity 

element and no zero divisors (ab=0 means 

either a=0 or b=0), it forms an integral 

domain

• The set of Integers with usual + and x is 

an integral domain



Field

• a set of numbers with two operations:
– Addition and multiplication

– F is an integral domain

– F has multiplicative reverse

• For each a in F other than 0, there is an element b such that 
ab=ba=1

• In essence, a field is a set in which we can do addition, 
subtraction, multiplication, and division without leaving 
the set. 
– Division is defined with the following rule: a/b = a (b–1)

• Examples of fields: rational numbers, real numbers, 
complex numbers. Integers are NOT a field.



Definitions



Modular Arithmetic

• define modulo operator a mod n to be 
remainder when a is divided by n
– e.g. 1 = 7 mod 3  ;   4 = 9 mod 5

• use the term congruence for: a ≡ b (mod n)

– when divided by n, a & b have same remainder 

– eg. 100 ≡ 34 (mod 11) 

• b is called the residue of a mod n
– since with integers can always write: a = qn + b

• usually have 0 <= b <= n-1
-12 mod 7 = -5 mod 7 = 2 mod 7 = 9 mod 7



Modulo 7 Example

... 

-21 -20 -19 -18 -17 -16 -15 

-14 -13 -12 -11 -10  -9  -8

-7  -6  -5  -4  -3  -2  -1 

0   1   2   3   4   5   6

7   8   9  10  11  12  13 

14  15  16  17  18  19  20 

21  22  23  24  25  26  27 

28  29  30  31  32  33  34 

... 

all numbers in a column are equivalent (have same 
remainder) and are called a residue class



Divisors

• say a non-zero number b divides a if for 

some m have a=mb (a,b,m all integers) 

– 0 ≡ a mod b

• that is b divides into a with no remainder 

• denote this b|a

• and say that b is a divisor of a

• eg. all of 1,2,3,4,6,8,12,24 divide 24 



Modular Arithmetic Operations

• has a finite number of values, and loops 

back from either end

• modular arithmetic

– Can perform addition & multiplication 

– Do modulo to reduce the answer to the finite 

set

• can do reduction at any point, ie
– a+b mod n = a mod n + b mod n



Modular Arithmetic

• can do modular arithmetic with any group 
of integers: Zn = {0, 1, … , n-1}

• form a commutative ring for addition

• with an additive identity (Table 4.2)

• some additional properties

– if (a+b)≡(a+c) mod n then b≡c mod n

– but (ab)≡(ac) mod n then b≡c mod n 

only if a is relatively prime to n



Modulo 8 Example



Greatest Common Divisor (GCD)

• a common problem in number theory

• GCD (a,b) of a and b is the largest number 

that divides both a and b 

– eg GCD(60,24) = 12

• often want no common factors (except 1) 

and hence numbers are relatively prime

– eg GCD(8,15) = 1

– hence 8 & 15 are relatively prime 



Euclid's GCD Algorithm

• an efficient way to find the GCD(a,b)

• uses theorem that: 
– GCD(a,b) = GCD(b, a mod b)

• Euclid's Algorithm to compute GCD(a,b): 
– A=a, B=b

– while B>0

•R = A mod B

•A = B, B = R

– return A



Example GCD(1970,1066)

1970 = 1 x 1066 + 904 gcd(1066, 904)

1066 = 1 x 904 + 162 gcd(904, 162)

904 = 5 x 162 + 94 gcd(162, 94)

162 = 1 x 94 + 68 gcd(94, 68)

94 = 1 x 68 + 26 gcd(68, 26)

68 = 2 x 26 + 16 gcd(26, 16)

26 = 1 x 16 + 10 gcd(16, 10)

16 = 1 x 10 + 6 gcd(10, 6)

10 = 1 x 6 + 4 gcd(6, 4)

6 = 1 x 4 + 2 gcd(4, 2)

4 = 2 x 2 + 0 gcd(2, 0)

• Compute successive instances of GCD(a,b) = GCD(b,a mod b).

• Note this MUST always terminate since will eventually get a mod b = 
0 (ie no remainder left).



Galois Fields

• finite fields play a key role in many cryptography 

algorithms

• can show number of elements in any finite field 

must be a power of a prime number pn

• known as Galois fields

• denoted GF(pn)

• in particular often use the fields:

– GF(p)

– GF(2n)



Galois Fields GF(p)

• GF(p) is the set of integers {0,1, … , p-1} with 

arithmetic operations modulo prime p

• these form a finite field

– since have multiplicative inverses

• hence arithmetic is “well-behaved” and can do 

addition, subtraction, multiplication, and division 

without leaving the field GF(p)

– Division depends on the existence of multiplicative 

inverses. Why p has to be prime?



Example GF(7)

Example: 3/2=5

GP(6) does not exist



Finding Inverses

• Finding inverses for large P is a problem

• can extend Euclid’s algorithm:
EXTENDED EUCLID(m, b)

1. (A1, A2, A3)=(1, 0, m); 

(B1, B2, B3)=(0, 1, b)

2. if B3 = 0

return A3 = gcd(m, b); no inverse

3. if B3 = 1 

return B3 = gcd(m, b); B2 = b–1 mod m

4. Q = A3 div B3

5. (T1, T2, T3)=(A1 – Q B1, A2 – Q B2, A3 – Q B3)

6. (A1, A2, A3)=(B1, B2, B3)

7. (B1, B2, B3)=(T1, T2, T3)

8. goto 2



Inverse of 550 in GF(1759)

Prove correctness



Polynomial Arithmetic

• can compute using polynomials

• several alternatives available

– ordinary polynomial arithmetic

– poly arithmetic with coefficients mod p

– poly arithmetic with coefficients mod p and 
polynomials mod another polynomial M(x)

• Motivation: use polynomials to model Shift 
and XOR operations



Ordinary Polynomial Arithmetic

• add or subtract corresponding coefficients

• multiply all terms by each other

• eg

– let f(x) = x3 + x2 + 2 and g(x) = x2 – x + 1

f(x) + g(x) = x3 + 2x2 – x + 3

f(x) – g(x) = x3 + x + 1

f(x) x g(x) = x5 + 3x2 – 2x + 2



Polynomial Arithmetic with Modulo 

Coefficients

• when computing value of each coefficient, 

modulo some value

• could be modulo any prime

• but we are most interested in mod 2

– ie all coefficients are 0 or 1

– eg. let f(x) = x3 + x2 and g(x) = x2 + x + 1

f(x) + g(x) = x3 + x + 1

f(x) x g(x) = x5 + x2



Modular Polynomial Arithmetic

• Given any polynomials f,g, can write in the form:
– f(x) = q(x) g(x) + r(x)

– can interpret r(x) as being a remainder

– r(x) = f(x) mod g(x)

• if have no remainder say g(x) divides f(x)

• if g(x) has no divisors other than itself & 1 say it 
is irreducible (or prime) polynomial

• Modular polynomial arithmetic modulo an 
irreducible polynomial forms a field
– Check the definition of a field



Polynomial GCD

• can find greatest common divisor for polys

• GCD: the one with the greatest degree
– c(x) = GCD(a(x), b(x)) if c(x) is the poly of greatest 

degree which divides both a(x), b(x)

– can adapt Euclid’s Algorithm to find it:

– EUCLID[a(x), b(x)]

1. A(x) = a(x); B(x) = b(x)

2. 2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]

3. R(x) = A(x) mod B(x)

4. A(x) ¨ B(x)

5. B(x) ¨ R(x)

6. goto 2



Modular Polynomial Arithmetic

• can compute in field GF(2n) 

– polynomials with coefficients modulo 2

– whose degree is less than n

– Coefficients always modulo 2 in an operation

– hence must modulo an irreducible polynomial 
of degree n (for multiplication only)

• form a finite field

• can always find an inverse

– can extend Euclid’s Inverse algorithm to find



Example GF(23)



Computational Considerations

• since coefficients are 0 or 1, can represent 

any such polynomial as a bit string

• addition becomes XOR of these bit strings

• multiplication is shift & XOR

– Example in P.133

• modulo reduction done by repeatedly 

substituting highest power with remainder 

of irreducible poly (also shift & XOR)



Summary

• have considered:

– concept of groups, rings, fields

– modular arithmetic with integers

– Euclid’s algorithm for GCD

– finite fields GF(p)

– polynomial arithmetic in general and in GF(2n) 



Chapter 5 

Advanced Encryption Standard



Origins

• clear a replacement for DES was needed
– have theoretical attacks that can break it

– have demonstrated exhaustive key search attacks

• can use Triple-DES – pretty safe 
– but slow, small blocks

• issued call for ciphers in `97

• 15 candidates accepted in Jun 98 

• 5 were short-listed in Aug-99 

• AES selected in Oct-2000

• issued as FIPS PUB 197 standard in Nov-2001 



AES Requirements

• private key symmetric block cipher 

• 128-bit data, 128/192/256-bit keys 

• stronger & faster than Triple-DES 

• active life of 20-30 years (+ archival use) 

• provide full specification & design details 

• both C & Java implementations

• NIST have released all submissions & 
unclassified analyses



AES Evaluation Criteria

• initial criteria (15 to 5):
– security – effort to practically cryptanalyse

– cost – computational, high-speed applications

– algorithm & implementation characteristics
• Flexibility, simplicity, maintainability

• final criteria
– general security

– software & hardware implementation ease

– implementation attacks

– flexibility (in changing en/decrypt, keying, #rounds, 
other factors)



AES Shortlist

• after testing and evaluation, shortlist in Aug-99: 
– MARS (IBM) - complex, fast, high security margin 

– RC6 (USA) - v. simple, v. fast, low security margin 

– Rijndael (Belgium) - clean, fast, good security margin 

– Serpent (Euro) - slow, clean, v. high security margin 

– Twofish (USA) - complex, v. fast, high security margin 

• then subject to further analysis & comment

• All were thought to be good – came down to 
best balance of attributes to meet criteria.

• Note mix of commercial (MARS, RC6, Twofish) 
verses academic (Rijndael, Serpent) proposals



The AES Cipher 

• designed by Rijmen-Daemen in Belgium 

• has 128/192/256 bit keys, 128 bit data 

• an iterative rather than feistel cipher
– treats data in 4 groups of 4 bytes

– operates an entire block in every round

– rather than feistel (operate on halves at a time)

• designed to be:
– resistant against known attacks

– speed and code compactness on many CPUs

– design simplicity



AES

• processes data as 4 groups of 4 bytes (state)

• has 9/11/13 rounds in which state undergoes: 

– byte substitution (1 S-box used on every byte) 

– shift rows (permute bytes between groups/columns) 

– mix columns (subs using matrix multiply of groups) 

– add round key (XOR state with key material) 

• initial XOR key material & incomplete last round

• all operations can be combined into XOR and 

table lookups - hence very fast & efficient



Rijndael



Byte Substitution

• a simple substitution of each byte

• uses one table of 16x16 bytes containing a 
permutation of all 256 8-bit values

• each byte of state is replaced by byte in row (left 
4-bits) & column (right 4-bits)
– eg. byte {95} is replaced by row 9 col 5 byte

– which is the value {2A}

• S-box is constructed using a defined 
transformation of the values in GF(28)

• designed to be resistant to all known attacks



Shift Rows

• a circular byte shift in each row

– 1st row is unchanged

– 2nd row does 1 byte circular shift to left

– 3rd row does 2 byte circular shift to left

– 4th row does 3 byte circular shift to left

• decrypt does shifts to right

• since state is processed by columns, this 

step permutes bytes between the columns



Mix Columns

• each column is processed separately

• each byte is replaced by a value 

dependent on all 4 bytes in the column

• effectively a matrix multiplication in GF(28) 

using prime poly m(x) =x8+x4+x3+x+1



Add Round Key

• XOR state with 128-bits of the round key

• again processed by column (though 

effectively a series of byte operations)

• inverse for decryption is identical since 

XOR is own inverse, just with correct 

round key

• designed to be as simple as possible



AES Round



AES Key Expansion

• takes 128-bit (16-byte) key and expands 
into array of 44/52/60 32-bit words

• start by copying key into first 4 words

• then loop creating words that depend on 
values in previous & 4 places back

– in 3 of 4 cases just XOR these together

– every 4th has S-box + rotate + XOR constant 
of previous before XOR together

• designed to resist known attacks



AES Decryption

• AES decryption is not identical to 
encryption since steps done in reverse

• but can define an equivalent inverse 
cipher with steps as for encryption

– but using inverses of each step

– with a different key schedule

• works since result is unchanged when

– swap byte substitution & shift rows

– swap mix columns & add (tweaked) round key



Implementation Aspects

• can efficiently implement on 8-bit CPU

– byte substitution works on bytes using a table 

of 256 entries

– shift rows is simple byte shifting

– add round key works on byte XORs

– mix columns requires matrix multiply in GF(28) 

which works on byte values, can be simplified 

to use a table lookup



Implementation Aspects

• can efficiently implement on 32-bit CPU

– redefine steps to use 32-bit words

– can pre-compute 4 tables of 256-words

– then each column in each round can be 
computed using 4 table lookups + 4 XORs

– at a cost of 16Kb to store tables

• designers believe this very efficient 
implementation was a key factor in its 
selection as the AES cipher



Summary

• have considered:

– the AES selection process

– the details of Rijndael – the AES cipher

– looked at the steps in each round

– the key expansion

– implementation aspects



Chapter 6 – Contemporary 

Symmetric Ciphers



Triple DES

• A replacement for DES was needed

– theoretical attacks that can break it

– demonstrated exhaustive key search attacks

• AES is a new cipher alternative

• Before AES alternative

– use multiple encryptions with DES 

• Triple-DES is the chosen form





Why Triple-DES?

• why not Double-DES?

– NOT same as some other single-DES use, 
but have

• meet-in-the-middle attack

– works whenever use a cipher twice

– since X = EK1[P] = DK2[C]

– attack by encrypting P with all keys and store

– then decrypt C with keys and match X value

– can show takes O(256) steps



Triple-DES with Two-Keys

• hence must use 3 encryptions
– would seem to need 3 distinct keys

– Key of 56 X 3 = 168 bits seems too long

• but can use 2 keys with E-D-E sequence
– C = EK1[DK2[EK1[P]]]

– No cryptographic significance to the use of D in the 
second step

• standardized in ANSI X9.17 & ISO8732

• no current known practical attacks
– some are now adopting Triple-DES with three keys for 

greater security



Triple-DES with Three-Keys

• although are no practical attacks on two-

key Triple-DES have some indications

• can use Triple-DES with Three-Keys to 

avoid even these

– C = EK3[DK2[EK1[P]]]

• has been adopted by some Internet 

applications



Blowfish

• a symmetric block cipher designed by 
Bruce Schneier in 1993/94

• characteristics

– fast implementation on 32-bit CPUs, 18 clock 
cycles per byte

– compact in use of memory, less than 5KB

– simple structure for analysis/implementation

– variable security by varying key size
• Allows tuning for speed/security tradeoff



Blowfish Key Schedule

• uses a 32 to 448 bit key 

• used to generate 

– 18 32-bit subkeys stored in P-array: P1 to P18

– S-boxes stored in Si,j, 
•i=1..4

•j=0..255





Blowfish Encryption

• uses two primitives: addition & XOR

• data is divided into two 32-bit halves L0 & R0
for i = 1 to 16 do

Ri = Li-1 XOR Pi;

Li = F[Ri] XOR Ri-1;

L17 = R16 XOR P18;

R17 = L16 XOR i17;

• where

F[a,b,c,d] = ((S1,a + S2,b) XOR S3,c) + S4,a

Break 32-bit Ri into (a,b,c,d)





Discussion

• provided key is large enough, brute-force key 

search is not practical, especially given the high 

key schedule cost

• key dependent S-boxes and subkeys make 

analysis very difficult

– Very few cryptoanalysis results on blowfish

• changing both halves in each round increases 

security

– Some study shows improved avalanche effects



RC5

• can vary key size / input data size / 

#rounds 

• very clean and simple design

• easy implementation on various CPUs

• yet still regarded as secure 

– Vary parameters to achieve tradeoffs



RC5 Ciphers

• RC5 is a family of ciphers RC5-w/r/b

– w = word size in bits (16/32/64)  data=2w

– r = number of rounds (0..255)

– b = number of bytes in key (0..255)

• nominal version is RC5-32/12/16

– ie 32-bit words so encrypts 64-bit data blocks

– using 12 rounds

– with 16 bytes (128-bit) secret key



RC5 Key Expansion

• RC5 uses 2r+2 subkey words (w-bits)

– Two subkeys for each round

– 2 subkeys for additional operations

• subkeys are stored in array S[i], i=0..t-1

• Key expansion: fill in pseudo-random bits 

to the original key K

• Certain amount of one-wayness

– Difficult to determine K from S





RC5 Encryption

• split input into two halves A & B
L0 = A + S[0];

R0 = B + S[1];

for i = 1 to r do
Li = ((Li-1 XOR Ri-1) <<< Ri-1) + S[2 x i];

Ri = ((Ri-1 XOR Li) <<< Li) + S[2 x i + 1];

• each round is like 2 DES rounds

• note rotation is main source of non-linearity 

• need reasonable number of rounds (eg 12-16) 

• Striking features: simplicity, data-dependent 
rotations



RC5 Modes

• RFC2040 defines 4 modes used by RC5

– RC5 Block Cipher, is ECB mode

– RC5-CBC, input length is a multiples of 2w

– RC5-CBC-PAD, any length CBC with padding

• Output can be longer than input

– RC5-CTS, CBC with padding

• Output has same length than input



Block Cipher Characteristics

• features seen in modern block ciphers are:

– variable key length / block size / no rounds

– mixed operators

• data/key dependent rotation

• key dependent S-boxes

– more complex key scheduling

• Lengthy key generation, simple encryption rounds

– operation of full data in each round



Stream Ciphers

• process the message bit by bit (as a stream) 

• typically have a (pseudo) random key stream

• combined (XOR) with plaintext bit by bit 

• randomness of key stream completely destroys 

any statistically properties in the message 

– Ci = Mi XOR StreamKeyi

• what could be simpler!!!! 

• but must never reuse key stream 

– otherwise can remove effect and recover messages



Block/Stream Ciphers

• Stream ciphers
– For applications that require encryt/decryt of a stream 

of data

– Examples: data communication channel, brower/web 
link

• Block ciphers
– For applications dealing with blocks of data

– Examples: file transfer, e-mail, database

• Either type can be used in virtually any 
application



Stream Cipher Properties

• some design considerations are:

– long period with no repetitions 

– statistically random 

– Highly nonlinear correlation



RC4

• variable key size, byte-oriented stream 

cipher 

• widely used (web SSL/TLS between 

browser and server, wireless WEP) 

• key forms random permutation of a 8-bit 

string 

• uses that permutation to scramble input 

info processed a byte at a time 



RC4 Security

• claimed secure against known attacks

– have some analyses, none practical 

• result is very non-linear 

• since RC4 is a stream cipher, must never 

reuse a key



Summary

• have considered:

– some other modern symmetric block ciphers

– Triple-DES

– Blowfish

– RC5

– briefly introduced stream ciphers



Cryptography and Network 

Security

Third Edition

by William Stallings

Lecture slides by Lawrie Brown



Chapter 10 – Key Management; 

Other Public Key Cryptosystems

No Singhalese, whether man or woman, 
would venture out of the house without a 
bunch of keys in his hand, for without such 
a talisman he would fear that some devil 
might take advantage of his weak state to 
slip into his body.

—The Golden Bough, Sir James 
George Frazer



Key Management

• public-key encryption helps address key 

distribution problems

• distribution of public keys

• use of public-key encryption to distribute 

secret keys



Distribution of Public Keys

• can be considered as using one of:

– Public announcement

– Publicly available directory

– Public-key authority

– Public-key certificates



Public Announcement

• users distribute public keys to recipients or 

broadcast to community at large

– eg. append PGP keys to email messages or 

post to news groups or email list

• major weakness is forgery

– anyone can create a key claiming to be 

someone else and broadcast it

– until forgery is discovered can masquerade as 

claimed user for authentication



Publicly Available Directory

• can obtain greater security by registering 
keys with a public directory

• directory must be trusted with properties:

– contains {name, public-key} entries

– participants register securely with directory

– participants can replace key at any time

– directory is periodically published

– directory can be accessed electronically

• still vulnerable to tampering or forgery



Public-Key Authority



Public-Key Authority

• improve security by tightening control over 

distribution of keys from directory

• requires users to know public key for the 

directory

• then users interact with directory to obtain 

any desired public key securely

– does require real-time access to directory 

when keys are needed



Public-Key Certificates

• The public-key authority could be a bottleneck in 
the system.
– must appeal to the authority for the key of every other 

user 

• certificates allow key exchange without real-time 
access to public-key authority

• a certificate binds identity to public key

• with all contents signed by a trusted Public-Key 
or Certificate Authority (CA)
– Certifies the identity

– Only the CA can make the certificates



Public-Key Certificates



Public-Key Distribution of Secret 

Keys

• public-key algorithms are slow

• so usually want to use private-key 

encryption to protect message contents

• hence need a session key

• have several alternatives for negotiating a 

suitable session using public-key 



Simple Secret Key Distribution

• proposed by Merkle in 1979

– A generates a new temporary public key pair

– A sends B the public key and their identity

– B generates a session key K sends it to A 
encrypted using the supplied public key

– A decrypts the session key and both use

• problem is that an opponent can intercept 
and impersonate both halves of protocol

– The scenario



Public-Key Distribution of Secret 

Keys

• First securely exchanged public-keys 

using a previous method



Diffie-Hellman Key Exchange

• first public-key type scheme proposed 

– For key distribution only

• by Diffie & Hellman in 1976 along with the 
exposition of public key concepts

– note: now know that James Ellis (UK CESG) 
secretly proposed the concept in 1970 

• is a practical method for public exchange 
of a secret key

• used in a number of commercial products



Diffie-Hellman Key Exchange

• a public-key distribution scheme 
– cannot be used to exchange an arbitrary message 

– rather it can establish a common key 

– known only to the two participants 

• value of key depends on the participants (and 
their private and public key information) 

• based on exponentiation in a finite (Galois) field 
(modulo a prime or a polynomial) - easy

• security relies on the difficulty of computing 
discrete logarithms (similar to factoring) – hard



Diffie-Hellman Setup

• all users agree on global parameters:

– large prime integer or polynomial q

– α a primitive root mod q

• each user (eg. A) generates their key

– chooses a secret key (number): xA < q

– compute their public key: yA = α
xA mod q

• each user makes public that key yA



Diffie-Hellman Key Exchange

• shared session key for users A & B is K: 
K = yA

xB mod q  (which B can compute) 

K = yB
xA mod q  (which A can compute) 

(example)

• K is used as session key in private-key 
encryption scheme between Alice and Bob

• if Alice and Bob subsequently communicate, 
they will have the same key as before, unless 
they choose new public-keys 

• attacker needs an x, must solve discrete log



Diffie-Hellman Example 

• users Alice & Bob who wish to swap keys:

• agree on prime q=353 and α=3

• select random secret keys:
– A chooses xA=97, B chooses xB=233

• compute public keys:
– yA=3

97
mod 353 = 40 (Alice)

– yB=3
233

mod 353 = 248 (Bob)

• compute shared session key as:
KAB= yB

xA mod 353 = 248
97

= 160 (Alice)

KAB= yA
xB mod 353 = 40

233
= 160 (Bob)



Elliptic Curve Cryptography

• majority of public-key crypto (RSA, D-H) 

use either integer or polynomial arithmetic 

with very large numbers/polynomials

• imposes a significant load in storing and 

processing keys and messages

• an alternative is to use elliptic curves

• offers same security with smaller bit sizes



Real Elliptic Curves

• an elliptic curve is defined by an equation in two 
variables x & y, with coefficients

• consider a cubic elliptic curve of form
– y2 = x3 + ax + b

– where x,y,a,b are all real numbers

– also define zero point O

• have addition operation for elliptic curve
– Q+R is reflection of intersection R

– Closed form for additions 
• (10.3) and (10.4) P.300-301



Real Elliptic Addition

Rule 1-5 in P.300



Finite Elliptic Curves

• Elliptic curve cryptography uses curves whose 
variables & coefficients are finite integers

• have two families commonly used:
– prime curves Ep(a,b) defined over Zp

• y2 mod p = (x3+ax+b) mod p

• use integers modulo a prime for both variables and coeff

• best in software

– Closed form of additions: P.303

– Example: P=(3,10), Q=(9,7), in E23(1,1)
• P+Q = (17,20)

• 2P = (7,12)



All points on E23(1,1)



Finite Elliptic Curves

• have two families commonly used:

– binary curves E2m(a,b) defined over GF(2m)

• use polynomials with binary coefficients

• best in hardware

– Take a slightly different form of the equation 

– Different close forms for addition (P.304)



Elliptic Curve Cryptography

• ECC addition is analog of multiply

• ECC repeated addition is analog of 
exponentiation

• need “hard” problem equiv to discrete log
– Q=kP, where Q,P are points in an elliptic curve

– is “easy” to compute Q given k,P

– but “hard” to find k given Q,P

– known as the elliptic curve logarithm problem

• Certicom example: E23(9,17) (P.305)

– k could be so large as to make brute-force fail



ECC Key Exchange

• can do key exchange similar to D-H

• users select a suitable curve Ep(a,b)

– Either a prime curve, or a binary curve

• select base point G=(x1,y1) with large order n s.t. 
nG=O

• A & B select private keys nA<n, nB<n

• compute public keys: PA=nA×G, PB=nB×G

• compute shared key: K=nA×PB, K=nB×PA
– same since K=nA×nB×G

• Example: P.305



ECC Encryption/Decryption

• select suitable curve & point G as in D-H 

• encode any message M as a point on the elliptic 

curve Pm=(x,y)

• each user chooses private key nA<n

• and computes public key PA=nA×G

• to encrypt pick random k: Cm={kG, Pm+k Pb},

• decrypt Cm compute: 

Pm+kPb–nB(kG) = Pm+k(nBG)–nB(kG) = Pm

• Example: P.307





ECC Security

• relies on elliptic curve logarithm problem

• fastest method is “Pollard rho method”

• compared to factoring, can use much 

smaller key sizes than with RSA etc

• for equivalent key lengths computations 

are roughly equivalent

• hence for similar security ECC offers 

significant computational advantages



Summary

• have considered:

– distribution of public keys

– public-key distribution of secret keys

– Diffie-Hellman key exchange

– Elliptic Curve cryptography



Chapter 8 – Introduction to Number 

Theory



Prime Numbers

• prime numbers only have divisors of 1 and self 

– they cannot be written as a product of other numbers 

– note: 1 is prime, but is generally not of interest 

• eg. 2,3,5,7 are prime, 4,6,8,9,10 are not

• prime numbers are central to number theory

• list of prime number less than 200 is: 
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 

61 67 71 73 79 83 89 97 101 103 107 109 113 127 

131 137 139 149 151 157 163 167 173 179 181 191 

193 197 199



Prime Factorisation

• to factor a number n is to write it as a 
product of other numbers: n=a × b × c

• note that factoring a number is relatively 
hard compared to multiplying the factors 
together to generate the number 

• the prime factorisation of a number n is 
when its written as a product of primes 
– eg. 91=7×13 ; 3600=24×32×52

– It is unique



Relatively Prime Numbers & GCD

• two numbers a, b are relatively prime if 
have no common divisors apart from 1 

– eg. 8 & 15 are relatively prime since factors of 
8 are 1,2,4,8 and of 15 are 1,3,5,15 and 1 is 
the only common factor 

• conversely can determine the greatest 
common divisor by comparing their prime 
factorizations and using least powers
– eg. 300=21×31×52 18=21×32 hence
GCD(18,300)=21×31×50=6



Fermat's Little Theorem

• ap-1 mod p = 1 

where p is prime and a is a positive integer not 

divisible by p



Euler Totient Function ø(n)

• when doing arithmetic modulo n 

• complete set of residues is: 0..n-1

• reduced set of residues includes those 
numbers which are relatively prime to n 
– eg for n=10, 

– complete set of residues is {0,1,2,3,4,5,6,7,8,9} 

– reduced set of residues is {1,3,7,9} 

• Euler Totient Function ø(n):
– number of elements in reduced set of residues of n

– ø(10) = 4



Euler Totient Function ø(n)

• to compute ø(n) need to count number of 

elements to be excluded

• in general need prime factorization, but

– for p (p prime) ø(p) = p-1

– for p.q (p,q prime) ø(p.q) = (p-1)(q-1)

• eg.

– ø(37) = 36

– ø(21) = (3–1)×(7–1) = 2×6 = 12



Euler's Theorem

• a generalisation of Fermat's Theorem 

• aø(n)mod n = 1 

– where gcd(a,n)=1

• eg.

– a=3;n=10; ø(10)=4; 

– hence 34 = 81 = 1 mod 10

– a=2;n=11; ø(11)=10;

– hence 210 = 1024 = 1 mod 11



Primality Testing

• A number of cryptographic algorithms need to 
find large prime numbers 

• traditionally sieve using trial division
– ie. divide by all numbers (primes) in turn less than the 

square root of the number 

– only works for small numbers

• statistical primality tests 
– for which all primes numbers satisfy property 

– but some composite numbers, called pseudo-primes, 
also satisfy the property, with a low probability

• Prime is in P: 
– Deterministic polynomial algorithm found in 2002



Miller Rabin Algorithm

• a test based on Fermat’s Theorem

• algorithm is:
TEST (n) is:

1. Find biggest k, k > 0, so that (n–1)=2kq

2. Select a random integer a, 1<a<n–1

3. if aq mod n = 1 then return (“maybe prime");

4. for j = 0 to k – 1 do

5. if (a2
j
q mod n = n-1)

then return(" maybe prime ")

6. return ("composite")

• Proof and examples



Probabilistic Considerations

• if Miller-Rabin returns “composite” the 

number is definitely not prime

• otherwise is a prime or a pseudo-prime

• chance it detects a pseudo-prime is < ¼

• hence if repeat test with different random a 

then chance n is prime after t tests is:

– Pr(n prime after t tests) = 1-4-t

– eg. for t=10 this probability is > 0.99999



Prime Distribution

• there are infinite prime numbers

– Euclid’s proof

• prime number theorem states that 

– primes near n occur roughly every (ln n) integers

• since can immediately ignore evens and 
multiples of 5, in practice only need test 0.4 

ln(n) numbers before locate a prime around n

– note this is only the “average” sometimes primes are 

close together, at other times are quite far apart



Chinese Remainder Theorem

• Used to speed up modulo computations 

• Used to modulo a product of numbers 

– eg. mod M = m1m2..mk , where gcd(mi,mj)=1

• Chinese Remainder theorem lets us work 

in each moduli mi separately 

• since computational cost is proportional to 

size, this is faster than working in the full 

modulus M



Chinese Remainder Theorem

• to compute (A mod M) can firstly compute 

all (ai mod mi) separately and then 

combine results to get answer using:



Exponentiation mod p

• Ax = b (mod p)

• from Euler’s theorem have aø(n) mod n=1 

• consider am mod n=1, GCD(a,n)=1

– must exist for m= ø(n) but may be smaller

– once powers reach m, cycle will repeat

• if smallest is m= ø(n) then a is called a 

primitive root



Discrete Logarithms or Indices

• the inverse problem to exponentiation is to find 
the discrete logarithm of a number modulo p 

• Given a, b, p, find x where ax = b mod p

• written as x=loga b mod p or x=inda,p(b)

• Logirthm may not always exist
– x = log3 4 mod 13 (x st 3x = 4 mod 13) has no answer 

– x = log2 3 mod 13 = 4 by trying successive powers 

• whilst exponentiation is relatively easy, finding 
discrete logarithms is generally a hard problem
– Oneway-ness: desirable in modern cryptography 



Summary

• have considered:

– prime numbers

– Fermat’s and Euler’s Theorems

– Primality Testing

– Chinese Remainder Theorem

– Discrete Logarithms
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Chapter 9 – Public Key 

Cryptography and RSA

Every Egyptian received two names, which were 

known respectively as the true name and the good 

name, or the great name and the little name; and 

while the good or little name was made public, the 

true or great name appears to have been carefully 

concealed.

—The Golden Bough, Sir James George Frazer



Private-Key Cryptography

• traditional private/secret/single key
cryptography uses one key 

• shared by both sender and receiver 

• if this key is disclosed, communications 
are compromised 

• also is symmetric, parties are equal 

• hence does not protect sender from 
receiver forging a message & claiming is 
sent by sender 



Public-Key Cryptography

• probably most significant advance in the 3000 

year history of cryptography 

• uses two keys – a public & a private key

– Anyone knowing the public key can encrypt 

messages or verify signatures 

– But cannot decrypt messages or create signatures

• asymmetric since parties are not equal 

• complements rather than replaces private key 

crypto



Public-Key Cryptography

• public-key/two-key/asymmetric cryptography 

involves the use of two keys: 

– a public-key, which may be known by anybody, and 

can be used to encrypt messages, and verify 

signatures

– a private-key, known only to the recipient, used to 

decrypt messages, and sign (create) signatures

• is asymmetric because

– those who encrypt messages or verify signatures 

cannot decrypt messages or create signatures





Why Public-Key Cryptography?

• developed to address two key issues:

– key distribution – how to have secure 

communications in general without having to 

trust a KDC with your key

• No need for secure key delivery

• No one else needs to know your private key

– digital signatures – how to verify a message 

comes intact from the claimed sender



Public-Key Characteristics

• Public-Key algorithms rely on two keys 
with the characteristics that it is:

– computationally infeasible to find decryption 
key knowing only algorithm & encryption key

– computationally easy to en/decrypt messages 
when the relevant (en/decrypt) key is known

– Oneway-ness is desirable: exp/log, mul/fac 

– either of the two related keys can be used for 
encryption, with the other used for decryption 
(in some schemes)



Public-Key Cryptosystems:Secrecy



Public-Key Cryptosystems: 

Authentication



Public-Key Cryptosystems: 

Secrecy and Authentication



Public-Key Applications

• can classify uses into 3 categories:

– encryption/decryption (provide secrecy)

– digital signatures (provide authentication)

– key exchange (of session keys)

• some algorithms are suitable for all uses, 

others are specific to one



Security of Public Key Schemes

• like private key schemes brute force exhaustive 
search attack is always theoretically possible 

• but keys used are too large (>512bits) 

• security relies on a large enough difference in 
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems

• requires the use of very large numbers

• hence is slow compared to private key schemes



RSA

• by Rivest, Shamir & Adleman  of MIT in 1977 

• best known & widely used public-key scheme 

• based on exponentiation of integers in a finite 

(Galois) field 

– Defined over integers modulo a prime 

– exponentiation takes O((log n)3) operations (easy) 

• uses large integers (eg. 1024 bits)

• security due to cost of factoring large numbers 

– factorization takes O(e log n log log n) operations (hard) 



RSA Key Setup

• each user generates a public/private key pair by: 

1. selecting two large primes at random - p, q (secret)

2. computing their system modulus N=p.q (public)
– note ø(N)=(p-1)(q-1) (secret)

3. selecting at random the encryption key e (public)
– where 1<e<ø(N), gcd(e,ø(N))=1 

4. solve following equation to find decryption key d (secret)
– e.d=1 mod ø(N) and 0≤d≤N

– Use the extended Euclid’s algorithm to find the multiplicative 
inverse of e (mod ø(N)) 

• publish their public encryption key: KU={e,N} 

• keep secret private decryption key: KR={d,p,q} 



Block size of RSA

• Each block is represented as an integer number

• Each block has a value M less than N

• The block size is <= log2(N) bits

• If the block size is k bits then                      

2k <= N <= 2K+1



RSA Use

• to encrypt a message M the sender:

– obtains public key of recipient KU={e,N}

– computes: C=Me mod N, where 0≤M<N

• to decrypt the ciphertext C the owner:

– uses their private key KR={d,p,q}

– computes: M=Cd mod N

• note that the message M must be smaller 

than the modulus N (block if needed)



Why RSA Works

• because of Euler's Theorem:
• aø(n)mod N = 1 

– where gcd(a,N)=1

• in RSA have:
– N=p.q

– ø(N)=(p-1)(q-1)

– carefully chosen e & d to be inverses mod ø(N)

– hence e.d=1+k.ø(N) for some k

• Two cases: 
– 1. gcd(M, N) = 1

– 2. gcd(M, N) > 1, see equation (8.6) in P.243



RSA Example

1. Select primes: p=17 & q=11

2. Compute n = pq =17×11=187

3. Compute ø(n)=(p–1)(q-1)=16×10=160

4. Select e : gcd(e,160)=1; choose e=7

5. Determine d: de=1 mod 160 and d < 160

Value is d=23 since 23×7=161= 10×160+1

6. Publish public key KU={7,187}

7. Keep secret private key KR={23,17,11}



RSA Example cont

• sample RSA encryption/decryption is: 

• given message M = 88 (88<187)

• encryption:

C = 887 mod 187 = 11

• decryption:

M = 1123 mod 187 = 88



Exponentiation

• can use the Square and Multiply Algorithm

• a fast, efficient algorithm for 

exponentiation 

• concept is based on repeatedly squaring 

base 

• and multiplying in the ones that are 

needed to compute the result 

• look at binary representation of exponent 



Exponentiation



RSA Key Generation

• users of RSA must:
– determine two primes at random - p, q

– select either e or d and compute the other

• primes p,q must not be easily derived 
from modulus N=p.q

– means must be sufficiently large

– typically guess and use probabilistic test

• exponents e, d are inverses, so use 
Inverse algorithm to compute the other



RSA Security

• three approaches to attacking RSA:

– brute force key search (infeasible given size 

of numbers)

– mathematical attacks (based on difficulty of 

computing ø(N), by factoring modulus N)

– timing attacks (on running of decryption)



Factoring Problem

• mathematical approach takes 3 forms:
– factor N=p.q, hence find ø(N) and then d

– determine ø(N) directly and find d

– find d directly

• currently believe all equivalent to factoring
– have seen slow improvements over the years 

• as of Aug-99 best is 130 decimal digits (512) bit with GNFS 

– biggest improvement comes from improved algorithm
• cf “Quadratic Sieve” to “Generalized Number Field Sieve”

– barring dramatic breakthrough 1024+ bit RSA secure
• ensure p, q of similar size and matching other constraints



Timing Attacks

• developed in mid-1990’s

• exploit timing variations in operations

– infer bits of d based on time taken 

• countermeasures

– use constant exponentiation time

– add random delays

– blind values used in calculations

• C’ = (Mr)e, M’ = (C’)d, M=M’r-1



Summary

• have considered:

– principles of public-key cryptography

– RSA algorithm, implementation, security



Cryptography and Network 

Security

Third Edition

by William Stallings

Lecture slides by Lawrie Brown



Basic Terminology

• plaintext - the original message 

• ciphertext - the coded message 

• cipher - algorithm for transforming plaintext/ciphertext 

• key - info used in cipher known only to sender/receiver 

• encipher (encrypt) - converting plaintext to ciphertext 

• decipher (decrypt) - recovering ciphertext from plaintext

• cryptography - study of encryption principles/methods

• cryptanalysis (codebreaking) - the study of principles/ 
methods of deciphering ciphertext without knowing key

• cryptology - the field of both cryptography and 
cryptanalysis



Two kinds of Ciphers

State-of-the-art: two kinds of most popular 

encryption algorithms

• Symmetric ciphers 

– Sender and receiver share a common key

• Public key ciphers 

– Sender and receiver have asymmetric 

information of the key(s)



Symmetric Encryption

• or conventional / private-key / single-key

• was only type prior to invention of public-
key in 1970’s

• remains very widely used

• sender and recipient share a common key

– Both parties have full information of the key 

• all classical encryption algorithms are 
common key (private-key)

– Characteristic of conventional algorithms



Symmetric Cipher Model



Requirements

• two requirements for secure use of 
symmetric encryption:

– a strong encryption algorithm (keeping key 
secret is sufficient for security)

– a secret key known only to sender / receiver

Y = EK(X)   

X = DK(Y)

• assume encryption algorithm is known

• implies a secure channel to distribute key



Cryptography

• can characterize by:

– type of encryption operations used

• substitution / transposition / product systems

– number of keys used

• single-key or private / two-key or public

– way in which plaintext is processed

• Block: process one block of elements a time

• Stream: continuous input, output one element a 

time



Types of Cryptanalytic Attacks
• ciphertext only

– know a) algorithm b) ciphertext

• known plaintext

– know some given plaintext/ciphertext pairs   

• chosen plaintext

– select plaintext and obtain ciphertext

• chosen ciphertext

– select ciphertext and obtain plaintext

• chosen text

– select either plaintext or ciphertext to 
en/decrypt to attack cipher



Brute Force Search

• always possible to simply try every key 

• most basic attack, proportional to key size 

• assume either know / recognise plaintext



More Definitions

• unconditional security

– no matter how much computer power is 
available, the cipher cannot be broken since 
the ciphertext provides insufficient information 
to uniquely determine the corresponding 
plaintext (non-exist in real applications)

• computational security

– given limited computing resources (eg time 
needed for calculations is greater than age of 
universe), the cipher cannot be broken 



Classical Ciphers

• Examine a sampling of what might be 
called classical encryption techniques. 

• Illustrate the basic approaches to 
symmetric encryption and the types of 
cryptanalytic attacks that must be 
anticipated.

• The two basic building blocks of all 
encryption techniques: substitution and 
transposition.



Classical Substitution Ciphers

• where letters of plaintext are replaced by 

other letters or by numbers or symbols

• or if plaintext is viewed as a sequence of 

bits, then substitution involves replacing 

plaintext bit patterns with ciphertext bit 

patterns



Caesar Cipher

• earliest known substitution cipher

• by Julius Caesar 

• first attested use in military affairs

• replaces each letter by a letter three
places down the alphabet 

• example:

meet me after the toga party

PHHW PH DIWHU WKH WRJD SDUWB



Caesar Cipher

• can define transformation as:
a b c d e f g h i j k l m n o p q r s t u v w x y 
z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B 
C

• mathematically give each letter a number
a b c d e f g h i j k  l  m

0 1 2 3 4 5 6 7 8 9 10 11 12

n  o  p  q  r  s  t  u  v  w  x  y  Z

13 14 15 16 17 18 19 20 21 22 23 24 25

• then have Caesar cipher as:

C = E(p) = (p + k) mod (26)

p = D(C) = (C – k) mod (26)

– modulo arithmetic: 1 = 27 mod 26, 3 = 29 mod 26



Cryptanalysis of Caesar Cipher 

• only have 26 possible keys

– Could shift K = 0, 1, 2, …, 25 slots 

• could simply try each in turn 

• a brute force search

• given ciphertext, just try all shifts of letters

• do need to recognize when have plaintext

• Test:break ciphertext 

GCUA VQ DTGCM



Monoalphabetic Cipher

• rather than just shifting the alphabet 

• could shuffle the letters arbitrarily 

• each plaintext letter maps to a different random 
ciphertext letter 

• hence key is 26 letters long 

Plain:  abcdefghijklmnopqrstuvwxyz 

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext:  ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA



Monoalphabetic Cipher Security

• now have a total of 26! = 4 x 10^26 keys 

• with so many keys, might think is secure

– The simplicity and strength of the 

monoalphabetic substitution cipher dominated 

for the first millenium AD.

• but would be !!!WRONG!!!

– First broken by Arabic scientists in 9th century



Frequency Analysis

• letters are not equally commonly used 

• in English e is by far the most common letter 

• then T,R,N,I,O,A,S 

• other letters are fairly rare 

• cf. Z,J,K,Q,X 

• have tables of single, double & triple letter 

frequencies 



English Letter Frequencies



Use in Cryptanalysis

• key concept - monoalphabetic substitution 

ciphers do not change relative letter frequencies 

• discovered by Arabian scientists in 9th century

• calculate letter frequencies for ciphertext

• compare counts/plots against known values 

• for monoalphabetic must identify each letter

– tables of common double/triple letters help



Example Cryptanalysis

• given ciphertext:
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

• count relative letter frequencies (see text)

• guess P & Z are e and t

• guess ZW is th and hence ZWP is the

• proceeding with trial and error finally get:
it was disclosed yesterday that several informal but

direct contacts have been made with political

representatives of the viet cong in moscow



Playfair Cipher

• not even the large number of keys in a 

monoalphabetic cipher provides security 

• one approach to improving security was to 

encrypt multiple letters 

• the Playfair Cipher is an example 

• invented by Charles Wheatstone in 1854, 

but named after his friend Baron Playfair 



Playfair Key Matrix

• a 5X5 matrix of letters based on a keyword 

• fill in letters of keyword (sans duplicates) 

• fill rest of matrix with other letters

• eg. using the keyword MONARCHY
MONAR

CHYBD

EFGIK

LPQST

UVWXZ



Encrypting and Decrypting

• plaintext encrypted two letters at a time: 
1. if a pair is a repeated letter, insert a filler like 'X', 

eg. "balloon" encrypts as "ba lx lo on" 

2. if both letters fall in the same row, replace each with 
letter to right (wrapping back to start from end), 

eg. “ar" encrypts as "RM" 

3. if both letters fall in the same column, replace each 
with the letter below it (again wrapping to top from 
bottom), eg. “mu" encrypts to "CM" 

4. otherwise each letter is replaced by the one in its 
row in the column of the other letter of the pair, eg. 
“hs" encrypts to "BP", and “ea" to "IM" or "JM" (as 
desired) 



Security of the Playfair Cipher

• security much improved over monoalphabetic

• since have 26 x 26 = 676 digrams 

• would need a 676-entry frequency table to 

analyse (verses 26 for a monoalphabetic) 

• and correspondingly more ciphertext 

• was widely used for many years (eg. US & 

British military in WW1) 

• it can be broken, given a few hundred letters 

• since still has much of plaintext structure 



Polyalphabetic Ciphers

• another approach to improving security is to use 

multiple cipher alphabets 

• called polyalphabetic substitution ciphers

• makes cryptanalysis harder with more alphabets 

to guess and flatter frequency distribution 

• use a key to select which alphabet is used for 

each letter of the message 

• use each alphabet in turn 

• repeat from start after end of key is reached 



Example

key:       deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

• write the plaintext out 

• write the keyword repeated above it

– eg using keyword deceptive

• use each key letter as a caesar cipher key 

• encrypt the corresponding plaintext letter



Vigenère Cipher

• simplest polyalphabetic substitution cipher 
is the Vigenère Cipher

• effectively multiple caesar ciphers 

• key is d-letter long K = k1 k2 ... kd 

• ith letter specifies ith alphabet to use 

• use each alphabet in turn 

• repeat from start after d letters in message

• decryption simply works in reverse 



Security of Vigenère Ciphers

• have multiple ciphertext letters for each 

plaintext letter

• hence letter frequencies are obscured

• but not totally lost

• start with letter frequencies

– see if look monoalphabetic or not

• if not, then need to determine number of 

alphabets, since then can attach each



Kasiski Method

repetitions in ciphertext give clues to period

• so find same plaintext an exact period apart 

• which results in the same ciphertext 

• eg repeated “VTW” in previous example
key:       deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ

• suggests size of 3 or 9

• find a number of duplicated sequences, collect all their 
distances apart, look for common factors

• then attack each monoalphabetic cipher individually 
using same techniques as before



Autokey Cipher

• Use the plain text itself as part of the key

• eg. given key deceptive
key:       deceptivewearediscoveredsav

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGKZEIIGASXSTSLVVWLA

• but still have frequency characteristics to 

attack 



One-Time Pad

• if a truly random key as long as the message is 
used, the cipher will be secure 

• called a One-Time pad

• is unbreakable since ciphertext bears no 
statistical relationship to the plaintext
– No repetition of patterns

• since for any plaintext & any ciphertext there 
exists a key mapping one to other

• can only use the key once though

• have problem of safe distribution of key



Transposition Ciphers

• now consider classical transposition or 

permutation ciphers 

• these hide the message by rearranging 

the letter order 

• without altering the actual letters used

• can recognise these since have the same 

frequency distribution as the original text 



Rail Fence cipher

• write message letters out diagonally over a 

number of rows 

• then read off cipher row by row

• eg. write message out as:
m e m a t r h t g p r y

e t e f e t e o a a t

• giving ciphertext
MEMATRHTGPRYETEFETEOAAT



Row Transposition Ciphers

• a more complex scheme

• write letters of message out in rows over a 
specified number of columns

• then reorder the columns according to 
some key before reading off the rows
Key:       4 3 1 2 5 6 7

Plaintext: a t t a c k p

o s t p o n e

d u n t i l t

w o a m x y z

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ



Product Ciphers

• ciphers using substitutions or transpositions are 

not secure because of language characteristics

• hence consider using several ciphers in 

succession to make harder, but: 

– two substitutions make a more complex substitution 

– two transpositions make more complex transposition 

– but a substitution followed by a transposition makes a 

new much harder cipher 

• this is bridge from classical to modern ciphers



Rotor Machines

• Multiple-stage substitution algorithms

• before modern ciphers, rotor machines were 
most common product cipher

• were widely used in WW2
– German Enigma, Allied Hagelin, Japanese Purple

• implemented a very complex, varying 
substitution cipher

• used a series of cylinders, each giving one 
substitution, which rotated and changed after 
each letter was encrypted



Steganography

• an alternative to encryption

• hides existence of message

– using only a subset of letters/words in a 

longer message marked in some way

– using invisible ink

– hiding graphic image or sound file

• has drawbacks

– high overhead to hide relatively few info bits



Summary

• have considered:

– classical cipher techniques and terminology

– monoalphabetic substitution ciphers

– cryptanalysis using letter frequencies

– Playfair ciphers

– polyalphabetic ciphers

– transposition ciphers

– product ciphers and rotor machines

– stenography


