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Preface

The Machine Learning Tsunami

In 2006, Geoffrey Hinton et al. published a paper' showing how to train a deep neural
network capable of recognizing handwritten digits with state-of-the-art precision
(>98%). They branded this technique “Deep Learning” Training a deep neural net
was widely considered impossible at the time,? and most researchers had abandoned
the idea since the 1990s. This paper revived the interest of the scientific community
and before long many new papers demonstrated that Deep Learning was not only
possible, but capable of mind-blowing achievements that no other Machine Learning
(ML) technique could hope to match (with the help of tremendous computing power
and great amounts of data). This enthusiasm soon extended to many other areas of
Machine Learning.

Fast-forward 10 years and Machine Learning has conquered the industry: it is now at
the heart of much of the magic in today’s high-tech products, ranking your web
search results, powering your smartphone’s speech recognition, and recommending
videos, beating the world champion at the game of Go. Before you know it, it will be
driving your car.

Machine Learning in Your Projects
So naturally you are excited about Machine Learning and you would love to join the
party!

Perhaps you would like to give your homemade robot a brain of its own? Make it rec-
ognize faces? Or learn to walk around?

1 Available on Hinton’s home page at http://www.cs.toronto.edu/~hinton/.

2 Despite the fact that Yann Lecun’s deep convolutional neural networks had worked well for image recognition
since the 1990s, although they were not as general purpose.
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Or maybe your company has tons of data (user logs, financial data, production data,
machine sensor data, hotline stats, HR reports, etc.), and more than likely you could
unearth some hidden gems if you just knew where to look; for example:

« Segment customers and find the best marketing strategy for each group

« Recommend products for each client based on what similar clients bought
o Detect which transactions are likely to be fraudulent

o Predict next year’s revenue

e And more

Whatever the reason, you have decided to learn Machine Learning and implement it
in your projects. Great idea!

Objective and Approach

This book assumes that you know close to nothing about Machine Learning. Its goal
is to give you the concepts, the intuitions, and the tools you need to actually imple-
ment programs capable of learning from data.

We will cover a large number of techniques, from the simplest and most commonly
used (such as linear regression) to some of the Deep Learning techniques that regu-
larly win competitions.

Rather than implementing our own toy versions of each algorithm, we will be using
actual production-ready Python frameworks:

o Scikit-Learn is very easy to use, yet it implements many Machine Learning algo-
rithms efficiently, so it makes for a great entry point to learn Machine Learning.

o TensorFlow is a more complex library for distributed numerical computation
using data flow graphs. It makes it possible to train and run very large neural net-
works efficiently by distributing the computations across potentially thousands
of multi-GPU servers. TensorFlow was created at Google and supports many of
their large-scale Machine Learning applications. It was open-sourced in Novem-
ber 2015.

The book favors a hands-on approach, growing an intuitive understanding of
Machine Learning through concrete working examples and just a little bit of theory.
While you can read this book without picking up your laptop, we highly recommend
you experiment with the code examples available online as Jupyter notebooks at
https://github.com/ageron/handson-ml.
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Prerequisites

This book assumes that you have some Python programming experience and that you
are familiar with Python’s main scientific libraries, in particular NumPy, Pandas, and
Matplotlib.

Also, if you care about what's under the hood you should have a reasonable under-
standing of college-level math as well (calculus, linear algebra, probabilities, and sta-
tistics).

If you don’t know Python yet, http://learnpython.org/ is a great place to start. The offi-
cial tutorial on python.org is also quite good.

If you have never used Jupyter, Chapter 2 will guide you through installation and the
basics: it is a great tool to have in your toolbox.

If you are not familiar with Python’s scientific libraries, the provided Jupyter note-
books include a few tutorials. There is also a quick math tutorial for linear algebra.

Roadmap

This book is organized in two parts. Part I, The Fundamentals of Machine Learning,
covers the following topics:

o What is Machine Learning? What problems does it try to solve? What are the
main categories and fundamental concepts of Machine Learning systems?

« The main steps in a typical Machine Learning project.

« Learning by fitting a model to data.

+ Optimizing a cost function.

» Handling, cleaning, and preparing data.

o Selecting and engineering features.

o Selecting a model and tuning hyperparameters using cross-validation.

 The main challenges of Machine Learning, in particular underfitting and overfit-
ting (the bias/variance tradeoff).

+ Reducing the dimensionality of the training data to fight the curse of dimension-
ality.
o The most common learning algorithms: Linear and Polynomial Regression,

Logistic Regression, k-Nearest Neighbors, Support Vector Machines, Decision
Trees, Random Forests, and Ensemble methods.
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Part I1, Neural Networks and Deep Learning, covers the following topics:

« What are neural nets? What are they good for?
« Building and training neural nets using TensorFlow.

o The most important neural net architectures: feedforward neural nets, convolu-
tional nets, recurrent nets, long short-term memory (LSTM) nets, and autoen-
coders.

o Techniques for training deep neural nets.
o Scaling neural networks for huge datasets.

« Reinforcement learning.

The first part is based mostly on Scikit-Learn while the second part uses TensorFlow.

Don’t jump into deep waters too hastily: while Deep Learning is no
doubt one of the most exciting areas in Machine Learning, you
should master the fundamentals first. Moreover, most problems

, can be solved quite well using simpler techniques such as Random
Forests and Ensemble methods (discussed in Part I). Deep Learn-
ing is best suited for complex problems such as image recognition,
speech recognition, or natural language processing, provided you
have enough data, computing power, and patience.

Other Resources

Many resources are available to learn about Machine Learning. Andrew Ng's ML
course on Coursera and Geoffrey Hintons course on neural networks and Deep
Learning are amazing, although they both require a significant time investment
(think months).

There are also many interesting websites about Machine Learning, including of
course Scikit-Learn’s exceptional User Guide. You may also enjoy Dataquest, which
provides very nice interactive tutorials, and ML blogs such as those listed on Quora.
Finally, the Deep Learning website has a good list of resources to learn more.

Of course there are also many other introductory books about Machine Learning, in
particular:

o Joel Grus, Data Science from Scratch (O'Reilly). This book presents the funda-
mentals of Machine Learning, and implements some of the main algorithms in
pure Python (from scratch, as the name suggests).

o Stephen Marsland, Machine Learning: An Algorithmic Perspective (Chapman and
Hall). This book is a great introduction to Machine Learning, covering a wide
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range of topics in depth, with code examples in Python (also from scratch, but
using NumPy).

o Sebastian Raschka, Python Machine Learning (Packt Publishing). Also a great
introduction to Machine Learning, this book leverages Python open source libra-
ries (Pylearn 2 and Theano).

+ Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin, Learning from
Data (AMLBook). A rather theoretical approach to ML, this book provides deep
insights, in particular on the bias/variance tradeoft (see Chapter 4).

o Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd
Edition (Pearson). This is a great (and huge) book covering an incredible amount
of topics, including Machine Learning. It helps put ML into perspective.

Finally, a great way to learn is to join ML competition websites such as Kaggle.com
this will allow you to practice your skills on real-world problems, with help and
insights from some of the best ML professionals out there.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.
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This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/ageron/handson-ml.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Hands-On Machine Learning with
Scikit-Learn and TensorFlow by Aurélien Géron (O'Reilly). Copyright 2017 Aurélien
Géron, 978-1-491-96229-9”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’'Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
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John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/hands-on-machine-learning-
with-scikit-learn-and-tensorflow.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PARTI

The Fundamentals of
Machine Learning






CHAPTER1
The Machine Learning Landscape

When most people hear “Machine Learning,” they picture a robot: a dependable but-
ler or a deadly Terminator depending on who you ask. But Machine Learning is not
just a futuristic fantasy, it’s already here. In fact, it has been around for decades in
some specialized applications, such as Optical Character Recognition (OCR). But the
first ML application that really became mainstream, improving the lives of hundreds
of millions of people, took over the world back in the 1990s: it was the spam filter.
Not exactly a self-aware Skynet, but it does technically qualify as Machine Learning
(it has actually learned so well that you seldom need to flag an email as spam any-
more). It was followed by hundreds of ML applications that now quietly power hun-
dreds of products and features that you use regularly, from better recommendations
to voice search.

Where does Machine Learning start and where does it end? What exactly does it
mean for a machine to learn something? If I download a copy of Wikipedia, has my
computer really “learned” something? Is it suddenly smarter? In this chapter we will
start by clarifying what Machine Learning is and why you may want to use it.

Then, before we set out to explore the Machine Learning continent, we will take a
look at the map and learn about the main regions and the most notable landmarks:
supervised versus unsupervised learning, online versus batch learning, instance-
based versus model-based learning. Then we will look at the workflow of a typical ML
project, discuss the main challenges you may face, and cover how to evaluate and
fine-tune a Machine Learning system.

This chapter introduces a lot of fundamental concepts (and jargon) that every data
scientist should know by heart. It will be a high-level overview (the only chapter
without much code), all rather simple, but you should make sure everything is
crystal-clear to you before continuing to the rest of the book. So grab a coffee and let’s
get started!




If you already know all the Machine Learning basics, you may want
to skip directly to Chapter 2. If you are not sure, try to answer all
the questions listed at the end of the chapter before moving on.

What Is Machine Learning?

Machine Learning is the science (and art) of programming computers so they can
learn from data.

Here is a slightly more general definition:

[Machine Learning is the] field of study that gives computers the ability to learn
without being explicitly programmed.

—Arthur Samuel, 1959

And a more engineering-oriented one:

A computer program is said to learn from experience E with respect to some task T
and some performance measure P, if its performance on T, as measured by P, improves
with experience E.

—Tom Mitchell, 1997

For example, your spam filter is a Machine Learning program that can learn to flag
spam given examples of spam emails (e.g., flagged by users) and examples of regular
(nonspam, also called “ham”) emails. The examples that the system uses to learn are
called the training set. Each training example is called a training instance (or sample).
In this case, the task T is to flag spam for new emails, the experience E is the training
data, and the performance measure P needs to be defined; for example, you can use
the ratio of correctly classified emails. This particular performance measure is called
accuracy and it is often used in classification tasks.

If you just download a copy of Wikipedia, your computer has a lot more data, but it is
not suddenly better at any task. Thus, it is not Machine Learning.

Why Use Machine Learning?

Consider how you would write a spam filter using traditional programming techni-
ques (Figure 1-1):

1. First you would look at what spam typically looks like. You might notice that
some words or phrases (such as “4U,” “credit card,” “free,” and “amazing”) tend to
come up a lot in the subject. Perhaps you would also notice a few other patterns
in the sender’s name, the email’s body, and so on.
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2. You would write a detection algorithm for each of the patterns that you noticed,
and your program would flag emails as spam if a number of these patterns are
detected.

3. You would test your program, and repeat steps 1 and 2 until it is good enough.

Figure 1-1. The traditional approach

Since the problem is not trivial, your program will likely become a long list of com-
plex rules—pretty hard to maintain.

In contrast, a spam filter based on Machine Learning techniques automatically learns
which words and phrases are good predictors of spam by detecting unusually fre-
quent patterns of words in the spam examples compared to the ham examples
(Figure 1-2). The program is much shorter, easier to maintain, and most likely more
accurate.

Figure 1-2. Machine Learning approach
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Moreover, if spammers notice that all their emails containing “4U” are blocked, they
might start writing “For U” instead. A spam filter using traditional programming
techniques would need to be updated to flag “For U” emails. If spammers keep work-
ing around your spam filter, you will need to keep writing new rules forever.

In contrast, a spam filter based on Machine Learning techniques automatically noti-
ces that “For U” has become unusually frequent in spam flagged by users, and it starts
flagging them without your intervention (Figure 1-3).

Figure 1-3. Automatically adapting to change

Another area where Machine Learning shines is for problems that either are too com-
plex for traditional approaches or have no known algorithm. For example, consider
speech recognition: say you want to start simple and write a program capable of dis-
tinguishing the words “one” and “two.” You might notice that the word “two” starts
with a high-pitch sound (“T”), so you could hardcode an algorithm that measures
high-pitch sound intensity and use that to distinguish ones and twos. Obviously this
technique will not scale to thousands of words spoken by millions of very different
people in noisy environments and in dozens of languages. The best solution (at least
today) is to write an algorithm that learns by itself, given many example recordings
for each word.

Finally, Machine Learning can help humans learn (Figure 1-4): ML algorithms can be
inspected to see what they have learned (although for some algorithms this can be
tricky). For instance, once the spam filter has been trained on enough spam, it can
easily be inspected to reveal the list of words and combinations of words that it
believes are the best predictors of spam. Sometimes this will reveal unsuspected cor-
relations or new trends, and thereby lead to a better understanding of the problem.

Applying ML techniques to dig into large amounts of data can help discover patterns
that were not immediately apparent. This is called data mining.
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Figure 1-4. Machine Learning can help humans learn

To summarize, Machine Learning is great for:

« Problems for which existing solutions require a lot of hand-tuning or long lists of
rules: one Machine Learning algorithm can often simplify code and perform bet-
ter.

« Complex problems for which there is no good solution at all using a traditional
approach: the best Machine Learning techniques can find a solution.

o Fluctuating environments: a Machine Learning system can adapt to new data.

« Getting insights about complex problems and large amounts of data.

Types of Machine Learning Systems

There are so many different types of Machine Learning systems that it is useful to
classify them in broad categories based on:

o Whether or not they are trained with human supervision (supervised, unsuper-
vised, semisupervised, and Reinforcement Learning)

o Whether or not they can learn incrementally on the fly (online versus batch
learning)

o Whether they work by simply comparing new data points to known data points,
or instead detect patterns in the training data and build a predictive model, much
like scientists do (instance-based versus model-based learning)

These criteria are not exclusive; you can combine them in any way you like. For
example, a state-of-the-art spam filter may learn on the fly using a deep neural net-
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work model trained using examples of spam and ham; this makes it an online, model-
based, supervised learning system.

Let’s look at each of these criteria a bit more closely.

Supervised/Unsupervised Learning

Machine Learning systems can be classified according to the amount and type of
supervision they get during training. There are four major categories: supervised
learning, unsupervised learning, semisupervised learning, and Reinforcement Learn-
ing.

Supervised learning

In supervised learning, the training data you feed to the algorithm includes the desired
solutions, called labels (Figure 1-5).

Figure 1-5. A labeled training set for supervised learning (e.g., spam classification)

A typical supervised learning task is classification. The spam filter is a good example
of this: it is trained with many example emails along with their class (spam or ham),
and it must learn how to classify new emails.

Another typical task is to predict a target numeric value, such as the price of a car,
given a set of features (mileage, age, brand, etc.) called predictors. This sort of task is
called regression (Figure 1-6).! To train the system, you need to give it many examples
of cars, including both their predictors and their labels (i.e., their prices).

1 Fun fact: this odd-sounding name is a statistics term introduced by Francis Galton while he was studying the
fact that the children of tall people tend to be shorter than their parents. Since children were shorter, he called
this regression to the mean. This name was then applied to the methods he used to analyze correlations
between variables.
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In Machine Learning an attribute is a data type (e.g., “Mileage”),
while a feature has several meanings depending on the context, but
generally means an attribute plus its value (e.g., “Mileage =
15,000”). Many people use the words attribute and feature inter-
changeably, though.

Figure 1-6. Regression

Note that some regression algorithms can be used for classification as well, and vice
versa. For example, Logistic Regression is commonly used for classification, as it can
output a value that corresponds to the probability of belonging to a given class (e.g.,
20% chance of being spam).

Here are some of the most important supervised learning algorithms (covered in this
book):

o k-Nearest Neighbors

o Linear Regression

 Logistic Regression

o Support Vector Machines (SVMs)

o Decision Trees and Random Forests

o Neural networks?

[

Some neural network architectures can be unsupervised, such as autoencoders and restricted Boltzmann
machines. They can also be semisupervised, such as in deep belief networks and unsupervised pretraining.
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Unsupervised learning

In unsupervised learning, as you might guess, the training data is unlabeled
(Figure 1-7). The system tries to learn without a teacher.

Figure 1-7. An unlabeled training set for unsupervised learning

Here are some of the most important unsupervised learning algorithms (we will
cover dimensionality reduction in Chapter 8):

o Clustering
— k-Means
— Hierarchical Cluster Analysis (HCA)
— Expectation Maximization
« Visualization and dimensionality reduction
— Principal Component Analysis (PCA)
— Kernel PCA
— Locally-Linear Embedding (LLE)
— t-distributed Stochastic Neighbor Embedding (t-SNE)
« Association rule learning
— Apriori
— Eclat

For example, say you have a lot of data about your blog’s visitors. You may want to
run a clustering algorithm to try to detect groups of similar visitors (Figure 1-8). At
no point do you tell the algorithm which group a visitor belongs to: it finds those
connections without your help. For example, it might notice that 40% of your visitors
are males who love comic books and generally read your blog in the evening, while
20% are young sci-fi lovers who visit during the weekends, and so on. If you use a
hierarchical clustering algorithm, it may also subdivide each group into smaller
groups. This may help you target your posts for each group.
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Figure 1-8. Clustering

Visualization algorithms are also good examples of unsupervised learning algorithms:
you feed them a lot of complex and unlabeled data, and they output a 2D or 3D rep-
resentation of your data that can easily be plotted (Figure 1-9). These algorithms try
to preserve as much structure as they can (e.g., trying to keep separate clusters in the
input space from overlapping in the visualization), so you can understand how the
data is organized and perhaps identify unsuspected patterns.

Figure 1-9. Example of a t-SNE visualization highlighting semantic clusters’

3 Notice how animals are rather well separated from vehicles, how horses are close to deer but far from birds,
and so on. Figure reproduced with permission from Socher, Ganjoo, Manning, and Ng (2013), “T-SNE visual-
ization of the semantic word space.”
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A related task is dimensionality reduction, in which the goal is to simplify the data
without losing too much information. One way to do this is to merge several correla-
ted features into one. For example, a car’s mileage may be very correlated with its age,
so the dimensionality reduction algorithm will merge them into one feature that rep-
resents the car’s wear and tear. This is called feature extraction.

It is often a good idea to try to reduce the dimension of your train-
ing data using a dimensionality reduction algorithm before you
feed it to another Machine Learning algorithm (such as a super-
vised learning algorithm). It will run much faster, the data will take
up less disk and memory space, and in some cases it may also per-
form better.

Yet another important unsupervised task is anomaly detection—for example, detect-
ing unusual credit card transactions to prevent fraud, catching manufacturing defects,
or automatically removing outliers from a dataset before feeding it to another learn-
ing algorithm. The system is trained with normal instances, and when it sees a new
instance it can tell whether it looks like a normal one or whether it is likely an anom-
aly (see Figure 1-10).

Figure 1-10. Anomaly detection

Finally, another common unsupervised task is association rule learning, in which the
goal is to dig into large amounts of data and discover interesting relations between
attributes. For example, suppose you own a supermarket. Running an association rule
on your sales logs may reveal that people who purchase barbecue sauce and potato
chips also tend to buy steak. Thus, you may want to place these items close to each
other.
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Semisupervised learning

Some algorithms can deal with partially labeled training data, usually a lot of unla-
beled data and a little bit of labeled data. This is called semisupervised learning
(Figure 1-11).

Some photo-hosting services, such as Google Photos, are good examples of this. Once
you upload all your family photos to the service, it automatically recognizes that the
same person A shows up in photos 1, 5, and 11, while another person B shows up in
photos 2, 5, and 7. This is the unsupervised part of the algorithm (clustering). Now all
the system needs is for you to tell it who these people are. Just one label per person,*
and it is able to name everyone in every photo, which is useful for searching photos.

Figure 1-11. Semisupervised learning

Most semisupervised learning algorithms are combinations of unsupervised and
supervised algorithms. For example, deep belief networks (DBNs) are based on unsu-
pervised components called restricted Boltzmann machines (RBMs) stacked on top of
one another. RBMs are trained sequentially in an unsupervised manner, and then the
whole system is fine-tuned using supervised learning techniques.

Reinforcement Learning

Reinforcement Learning is a very different beast. The learning system, called an agent
in this context, can observe the environment, select and perform actions, and get
rewards in return (or penalties in the form of negative rewards, as in Figure 1-12). It
must then learn by itself what is the best strategy, called a policy, to get the most
reward over time. A policy defines what action the agent should choose when it isin a
given situation.

4 That’s when the system works perfectly. In practice it often creates a few clusters per person, and sometimes
mixes up two people who look alike, so you need to provide a few labels per person and manually clean up
some clusters.
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Figure 1-12. Reinforcement Learning

For example, many robots implement Reinforcement Learning algorithms to learn
how to walk. DeepMind’s AlphaGo program is also a good example of Reinforcement
Learning: it made the headlines in March 2016 when it beat the world champion Lee
Sedol at the game of Go. It learned its winning policy by analyzing millions of games,
and then playing many games against itself. Note that learning was turned off during
the games against the champion; AlphaGo was just applying the policy it had learned.

Batch and Online Learning

Another criterion used to classify Machine Learning systems is whether or not the
system can learn incrementally from a stream of incoming data.

Batch learning

In batch learning, the system is incapable of learning incrementally: it must be trained
using all the available data. This will generally take a lot of time and computing
resources, so it is typically done offline. First the system is trained, and then it is
launched into production and runs without learning anymore; it just applies what it
has learned. This is called offline learning.

If you want a batch learning system to know about new data (such as a new type of
spam), you need to train a new version of the system from scratch on the full dataset
(not just the new data, but also the old data), then stop the old system and replace it
with the new one.

Fortunately, the whole process of training, evaluating, and launching a Machine
Learning system can be automated fairly easily (as shown in Figure 1-3), so even a
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batch learning system can adapt to change. Simply update the data and train a new
version of the system from scratch as often as needed.

This solution is simple and often works fine, but training using the full set of data can
take many hours, so you would typically train a new system only every 24 hours or
even just weekly. If your system needs to adapt to rapidly changing data (e.g., to pre-
dict stock prices), then you need a more reactive solution.

Also, training on the full set of data requires a lot of computing resources (CPU,
memory space, disk space, disk I/O, network I/O, etc.). If you have a lot of data and
you automate your system to train from scratch every day, it will end up costing you a
lot of money. If the amount of data is huge, it may even be impossible to use a batch
learning algorithm.

Finally, if your system needs to be able to learn autonomously and it has limited
resources (e.g., a smartphone application or a rover on Mars), then carrying around
large amounts of training data and taking up a lot of resources to train for hours
every day is a showstopper.

Fortunately, a better option in all these cases is to use algorithms that are capable of
learning incrementally.

Online learning

In online learning, you train the system incrementally by feeding it data instances
sequentially, either individually or by small groups called mini-batches. Each learning
step is fast and cheap, so the system can learn about new data on the fly, as it arrives
(see Figure 1-13).

Figure 1-13. Online learning

Online learning is great for systems that receive data as a continuous flow (e.g., stock
prices) and need to adapt to change rapidly or autonomously. It is also a good option
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if you have limited computing resources: once an online learning system has learned
about new data instances, it does not need them anymore, so you can discard them
(unless you want to be able to roll back to a previous state and “replay” the data). This
can save a huge amount of space.

Online learning algorithms can also be used to train systems on huge datasets that
cannot fit in one machine’s main memory (this is called out-of-core learning). The
algorithm loads part of the data, runs a training step on that data, and repeats the
process until it has run on all of the data (see Figure 1-14).

This whole process is usually done offline (i.e., not on the live sys-
tem), so online learning can be a confusing name. Think of it as
incremental learning.

Figure 1-14. Using online learning to handle huge datasets

One important parameter of online learning systems is how fast they should adapt to
changing data: this is called the learning rate. If you set a high learning rate, then your
system will rapidly adapt to new data, but it will also tend to quickly forget the old
data (you don’t want a spam filter to flag only the latest kinds of spam it was shown).
Conversely, if you set a low learning rate, the system will have more inertia; that is, it
will learn more slowly, but it will also be less sensitive to noise in the new data or to
sequences of nonrepresentative data points.

A big challenge with online learning is that if bad data is fed to the system, the sys-
tem’s performance will gradually decline. If we are talking about a live system, your
clients will notice. For example, bad data could come from a malfunctioning sensor
on a robot, or from someone spamming a search engine to try to rank high in search
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results. To reduce this risk, you need to monitor your system closely and promptly
switch learning off (and possibly revert to a previously working state) if you detect a
drop in performance. You may also want to monitor the input data and react to
abnormal data (e.g., using an anomaly detection algorithm).

Instance-Based Versus Model-Based Learning

One more way to categorize Machine Learning systems is by how they generalize.
Most Machine Learning tasks are about making predictions. This means that given a
number of training examples, the system needs to be able to generalize to examples it
has never seen before. Having a good performance measure on the training data is
good, but insufficient; the true goal is to perform well on new instances.

There are two main approaches to generalization: instance-based learning and
model-based learning.

Instance-based learning

Possibly the most trivial form of learning is simply to learn by heart. If you were to
create a spam filter this way, it would just flag all emails that are identical to emails
that have already been flagged by users—not the worst solution, but certainly not the
best.

Instead of just flagging emails that are identical to known spam emails, your spam
filter could be programmed to also flag emails that are very similar to known spam
emails. This requires a measure of similarity between two emails. A (very basic) simi-
larity measure between two emails could be to count the number of words they have
in common. The system would flag an email as spam if it has many words in com-
mon with a known spam email.

This is called instance-based learning: the system learns the examples by heart, then
generalizes to new cases using a similarity measure (Figure 1-15).

Figure 1-15. Instance-based learning
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Model-based learning

Another way to generalize from a set of examples is to build a model of these exam-
ples, then use that model to make predictions. This is called model-based learning
(Figure 1-16).

Figure 1-16. Model-based learning

For example, suppose you want to know if money makes people happy, so you down-
load the Better Life Index data from the OECD’s website as well as stats about GDP
per capita from the IMF’s website. Then you join the tables and sort by GDP per cap-
ita. Table 1-1 shows an excerpt of what you get.

Table 1-1. Does money make people happier?

Country GDP per capita (USD) Life satisfaction

Hungary 12,240 49
Korea 27,195 5.8
France 37,675 6.5
Australia 50,962 73
United States 55,805 7.2

Let’s plot the data for a few random countries (Figure 1-17).
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Figure 1-17. Do you see a trend here?

There does seem to be a trend here! Although the data is noisy (i.e., partly random), it
looks like life satisfaction goes up more or less linearly as the country’s GDP per cap-
ita increases. So you decide to model life satisfaction as a linear function of GDP per
capita. This step is called model selection: you selected a linear model of life satisfac-
tion with just one attribute, GDP per capita (Equation 1-1).

Equation 1-1. A simple linear model

life_satisfaction = 90 + 91 x GDP_per_capita

This model has two model parameters, 0, and 0,.° By tweaking these parameters, you
can make your model represent any linear function, as shown in Figure 1-18.

Figure 1-18. A few possible linear models

5 By convention, the Greek letter 0 (theta) is frequently used to represent model parameters.
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Before you can use your model, you need to define the parameter values 6, and 9,.
How can you know which values will make your model perform best? To answer this
question, you need to specify a performance measure. You can either define a utility
function (or fitness function) that measures how good your model is, or you can define
a cost function that measures how bad it is. For linear regression problems, people
typically use a cost function that measures the distance between the linear model’s
predictions and the training examples; the objective is to minimize this distance.

This is where the Linear Regression algorithm comes in: you feed it your training
examples and it finds the parameters that make the linear model fit best to your data.
This is called training the model. In our case the algorithm finds that the optimal
parameter values are 8, = 4.85 and 6, = 4.91 x 107>

Now the model fits the training data as closely as possible (for a linear model), as you
can see in Figure 1-19.

Figure 1-19. The linear model that fits the training data best

You are finally ready to run the model to make predictions. For example, say you
want to know how happy Cypriots are, and the OECD data does not have the answer.
Fortunately, you can use your model to make a good prediction: you look up Cyprus’s
GDP per capita, find $22,587, and then apply your model and find that life satisfac-
tion is likely to be somewhere around 4.85 + 22,587 x 4.91 x 10~ = 5.96.

To whet your appetite, Example 1-1 shows the Python code that loads the data, pre-
pares it,° creates a scatterplot for visualization, and then trains a linear model and
makes a prediction.’

6 The code assumes that prepare_country_stats() is already defined: it merges the GDP and life satisfaction
data into a single Pandas dataframe.

7 It’s okay if you don’t understand all the code yet; we will present Scikit-Learn in the following chapters.
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Example 1-1. Training and running a linear model using Scikit-Learn

import matplotlib

import matplotlib.pyplot as plt
import numpy as np

import pandas as pd

import sklearn

# Load the data

oecd_bli = pd.read_csv("oecd_bli_2015.csv", thousands=',"')

gdp_per_capita = pd.read_csv("gdp_per_capita.csv",thousands=","',delimiter="\t',
encoding="'latinl', na_values="n/a")

# Prepare the data

country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)
X = np.c_[country_stats["GDP per capita"]]

y = np.c_[country_stats["Life satisfaction"]]

# Visualize the data
country_stats.plot(kind="'scatter', x="GDP per capita", y='Life satisfaction')
plt.show()

# Select a linear model
1in_reg_model = sklearn.linear_model.LinearRegression()

# Train the model
1in_reg_model.fit(X, y)

# Make a prediction for Cyprus
X_new = [[22587]] # Cyprus' GDP per capita
print(lin_reg_model.predict(X_new)) # outputs [[ 5.96242338]]

If you had used an instance-based learning algorithm instead, you
would have found that Slovenia has the closest GDP per capita to
that of Cyprus ($20,732), and since the OECD data tells us that
Slovenians’ life satisfaction is 5.7, you would have predicted a life
satisfaction of 5.7 for Cyprus. If you zoom out a bit and look at the
two next closest countries, you will find Portugal and Spain with
life satisfactions of 5.1 and 6.5, respectively. Averaging these three
values, you get 5.77, which is pretty close to your model-based pre-
diction. This simple algorithm is called k-Nearest Neighbors regres-
sion (in this example, k = 3).

Replacing the Linear Regression model with k-Nearest Neighbors
regression in the previous code is as simple as replacing this line:

clf = sklearn.linear_model.LinearRegression()

with this one:

clf = sklearn.neighbors.KNeighborsRegressor(n_neighbors=3)
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If all went well, your model will make good predictions. If not, you may need to use
more attributes (employment rate, health, air pollution, etc.), get more or better qual-
ity training data, or perhaps select a more powerful model (e.g., a Polynomial Regres-
sion model).

In summary:

e You studied the data.
e You selected a model.

 You trained it on the training data (i.e., the learning algorithm searched for the
model parameter values that minimize a cost function).

« Finally, you applied the model to make predictions on new cases (this is called
inference), hoping that this model will generalize well.

This is what a typical Machine Learning project looks like. In Chapter 2 you will
experience this first-hand by going through an end-to-end project.

We have covered a lot of ground so far: you now know what Machine Learning is
really about, why it is useful, what some of the most common categories of ML sys-
tems are, and what a typical project workflow looks like. Now let’s look at what can go
wrong in learning and prevent you from making accurate predictions.

Main Challenges of Machine Learning

In short, since your main task is to select a learning algorithm and train it on some
data, the two things that can go wrong are “bad algorithm” and “bad data” Let’s start
with examples of bad data.

Insufficient Quantity of Training Data

For a toddler to learn what an apple is, all it takes is for you to point to an apple and
say “apple” (possibly repeating this procedure a few times). Now the child is able to
recognize apples in all sorts of colors and shapes. Genius.

Machine Learning is not quite there yet; it takes a lot of data for most Machine Learn-
ing algorithms to work properly. Even for very simple problems you typically need
thousands of examples, and for complex problems such as image or speech recogni-
tion you may need millions of examples (unless you can reuse parts of an existing
model).
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The Unreasonable Effectiveness of Data

In a famous paper published in 2001, Microsoft researchers Michele Banko and Eric
Brill showed that very different Machine Learning algorithms, including fairly simple
ones, performed almost identically well on a complex problem of natural language
disambiguation® once they were given enough data (as you can see in Figure 1-20).

Figure 1-20. The importance of data versus algorithms®

As the authors put it: “these results suggest that we may want to reconsider the trade-
off between spending time and money on algorithm development versus spending it
on corpus development.”

The idea that data matters more than algorithms for complex problems was further
popularized by Peter Norvig et al. in a paper titled “The Unreasonable Effectiveness
of Data” published in 2009."° It should be noted, however, that small- and medium-
sized datasets are still very common, and it is not always easy or cheap to get extra
training data, so don’t abandon algorithms just yet.

<]

For example, knowing whether to write “to,” “two,” or “too” depending on the context.

9 Figure reproduced with permission from Banko and Brill (2001), “Learning Curves for Confusion Set Disam-
biguation.”

10 “The Unreasonable Effectiveness of Data,” Peter Norvig et al. (2009).
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Nonrepresentative Training Data

In order to generalize well, it is crucial that your training data be representative of the
new cases you want to generalize to. This is true whether you use instance-based
learning or model-based learning.

For example, the set of countries we used earlier for training the linear model was not
perfectly representative; a few countries were missing. Figure 1-21 shows what the
data looks like when you add the missing countries.

Figure 1-21. A more representative training sample

If you train a linear model on this data, you get the solid line, while the old model is
represented by the dotted line. As you can see, not only does adding a few missing
countries significantly alter the model, but it makes it clear that such a simple linear
model is probably never going to work well. It seems that very rich countries are not
happier than moderately rich countries (in fact they seem unhappier), and conversely
some poor countries seem happier than many rich countries.

By using a nonrepresentative training set, we trained a model that is unlikely to make
accurate predictions, especially for very poor and very rich countries.

It is crucial to use a training set that is representative of the cases you want to general-
ize to. This is often harder than it sounds: if the sample is too small, you will have
sampling noise (i.e., nonrepresentative data as a result of chance), but even very large
samples can be nonrepresentative if the sampling method is flawed. This is called
sampling bias.

A Famous Example of Sampling Bias

Perhaps the most famous example of sampling bias happened during the US presi-
dential election in 1936, which pitted Landon against Roosevelt: the Literary Digest
conducted a very large poll, sending mail to about 10 million people. It got 2.4 million
answers, and predicted with high confidence that Landon would get 57% of the votes.
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Instead, Roosevelt won with 62% of the votes. The flaw was in the Literary Digest’s
sampling method:

o First, to obtain the addresses to send the polls to, the Literary Digest used tele-
phone directories, lists of magazine subscribers, club membership lists, and the
like. All of these lists tend to favor wealthier people, who are more likely to vote
Republican (hence Landon).

o Second, less than 25% of the people who received the poll answered. Again, this
introduces a sampling bias, by ruling out people who don't care much about poli-
tics, people who don’t like the Literary Digest, and other key groups. This is a spe-
cial type of sampling bias called nonresponse bias.

Here is another example: say you want to build a system to recognize funk music vid-
eos. One way to build your training set is to search “funk music” on YouTube and use
the resulting videos. But this assumes that YouTube’s search engine returns a set of
videos that are representative of all the funk music videos on YouTube. In reality, the
search results are likely to be biased toward popular artists (and if you live in Brazil
you will get a lot of “funk carioca” videos, which sound nothing like James Brown).
On the other hand, how else can you get a large training set?

Poor-Quality Data

Obviously, if your training data is full of errors, outliers, and noise (e.g., due to poor-
quality measurements), it will make it harder for the system to detect the underlying
patterns, so your system is less likely to perform well. It is often well worth the effort
to spend time cleaning up your training data. The truth is, most data scientists spend
a significant part of their time doing just that. For example:

o If some instances are clearly outliers, it may help to simply discard them or try to
fix the errors manually.

« If some instances are missing a few features (e.g., 5% of your customers did not
specify their age), you must decide whether you want to ignore this attribute alto-
gether, ignore these instances, fill in the missing values (e.g., with the median
age), or train one model with the feature and one model without it, and so on.

Irrelevant Features

As the saying goes: garbage in, garbage out. Your system will only be capable of learn-
ing if the training data contains enough relevant features and not too many irrelevant
ones. A critical part of the success of a Machine Learning project is coming up with a
good set of features to train on. This process, called feature engineering, involves:
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o Feature selection: selecting the most useful features to train on among existing
features.

o Feature extraction: combining existing features to produce a more useful one (as
we saw earlier, dimensionality reduction algorithms can help).

o Creating new features by gathering new data.

Now that we have looked at many examples of bad data, let’s look at a couple of exam-
ples of bad algorithms.

Overfitting the Training Data

Say you are visiting a foreign country and the taxi driver rips you off. You might be
tempted to say that all taxi drivers in that country are thieves. Overgeneralizing is
something that we humans do all too often, and unfortunately machines can fall into
the same trap if we are not careful. In Machine Learning this is called overfitting: it
means that the model performs well on the training data, but it does not generalize
well.

Figure 1-22 shows an example of a high-degree polynomial life satisfaction model
that strongly overfits the training data. Even though it performs much better on the
training data than the simple linear model, would you really trust its predictions?

Figure 1-22. Overfitting the training data

Complex models such as deep neural networks can detect subtle patterns in the data,
but if the training set is noisy, or if it is too small (which introduces sampling noise),
then the model is likely to detect patterns in the noise itself. Obviously these patterns
will not generalize to new instances. For example, say you feed your life satisfaction
model many more attributes, including uninformative ones such as the country’s
name. In that case, a complex model may detect patterns like the fact that all coun-
tries in the training data with a w in their name have a life satisfaction greater than 7:
New Zealand (7.3), Norway (7.4), Sweden (7.2), and Switzerland (7.5). How confident
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are you that the W-satisfaction rule generalizes to Rwanda or Zimbabwe? Obviously
this pattern occurred in the training data by pure chance, but the model has no way
to tell whether a pattern is real or simply the result of noise in the data.

Overfitting happens when the model is too complex relative to the
amount and noisiness of the training data. The possible solutions
are:

« To simplify the model by selecting one with fewer parameters
(e.g., a linear model rather than a high-degree polynomial
model), by reducing the number of attributes in the training
data or by constraining the model

« To gather more training data

o To reduce the noise in the training data (e.g., fix data errors
and remove outliers)

Constraining a model to make it simpler and reduce the risk of overfitting is called
regularization. For example, the linear model we defined earlier has two parameters,
6, and 0,. This gives the learning algorithm two degrees of freedom to adapt the model
to the training data: it can tweak both the height (8,) and the slope (0,) of the line. If
we forced 6, = 0, the algorithm would have only one degree of freedom and would
have a much harder time fitting the data properly: all it could do is move the line up
or down to get as close as possible to the training instances, so it would end up
around the mean. A very simple model indeed! If we allow the algorithm to modify 0,
but we force it to keep it small, then the learning algorithm will effectively have some-
where in between one and two degrees of freedom. It will produce a simpler model
than with two degrees of freedom, but more complex than with just one. You want to
find the right balance between fitting the data perfectly and keeping the model simple
enough to ensure that it will generalize well.

Figure 1-23 shows three models: the dotted line represents the original model that
was trained with a few countries missing, the dashed line is our second model trained
with all countries, and the solid line is a linear model trained with the same data as
the first model but with a regularization constraint. You can see that regularization
forced the model to have a smaller slope, which fits a bit less the training data that the
model was trained on, but actually allows it to generalize better to new examples.
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Figure 1-23. Regularization reduces the risk of overfitting

The amount of regularization to apply during learning can be controlled by a hyper-
parameter. A hyperparameter is a parameter of a learning algorithm (not of the
model). As such, it is not affected by the learning algorithm itself; it must be set prior
to training and remains constant during training. If you set the regularization hyper-
parameter to a very large value, you will get an almost flat model (a slope close to
zero); the learning algorithm will almost certainly not overfit the training data, but it
will be less likely to find a good solution. Tuning hyperparameters is an important
part of building a Machine Learning system (you will see a detailed example in the
next chapter).

Underfitting the Training Data

As you might guess, underfitting is the opposite of overfitting: it occurs when your
model is too simple to learn the underlying structure of the data. For example, a lin-
ear model of life satisfaction is prone to underfit; reality is just more complex than
the model, so its predictions are bound to be inaccurate, even on the training exam-
ples.

The main options to fix this problem are:

o Selecting a more powerful model, with more parameters
o Feeding better features to the learning algorithm (feature engineering)

+ Reducing the constraints on the model (e.g., reducing the regularization hyper-
parameter)

Stepping Back

By now you already know a lot about Machine Learning. However, we went through
so many concepts that you may be feeling a little lost, so let’s step back and look at the
big picture:
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o Machine Learning is about making machines get better at some task by learning
from data, instead of having to explicitly code rules.

o There are many different types of ML systems: supervised or not, batch or online,
instance-based or model-based, and so on.

« In a ML project you gather data in a training set, and you feed the training set to
a learning algorithm. If the algorithm is model-based it tunes some parameters to
fit the model to the training set (i.e., to make good predictions on the training set
itself), and then hopefully it will be able to make good predictions on new cases
as well. If the algorithm is instance-based, it just learns the examples by heart and
uses a similarity measure to generalize to new instances.

o The system will not perform well if your training set is too small, or if the data is
not representative, noisy, or polluted with irrelevant features (garbage in, garbage
out). Lastly, your model needs to be neither too simple (in which case it will
underfit) nor too complex (in which case it will overfit).

There’s just one last important topic to cover: once you have trained a model, you
don’t want to just “hope” it generalizes to new cases. You want to evaluate it, and fine-
tune it if necessary. Let’s see how.

Testing and Validating

The only way to know how well a model will generalize to new cases is to actually try
it out on new cases. One way to do that is to put your model in production and moni-
tor how well it performs. This works well, but if your model is horribly bad, your
users will complain—not the best idea.

A better option is to split your data into two sets: the training set and the fest set. As
these names imply, you train your model using the training set, and you test it using
the test set. The error rate on new cases is called the generalization error (or out-of-
sample error), and by evaluating your model on the test set, you get an estimation of
this error. This value tells you how well your model will perform on instances it has
never seen before.

If the training error is low (i.e., your model makes few mistakes on the training set)
but the generalization error is high, it means that your model is overfitting the train-
ing data.

It is common to use 80% of the data for training and hold out 20%
for testing.
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So evaluating a model is simple enough: just use a test set. Now suppose you are hesi-
tating between two models (say a linear model and a polynomial model): how can
you decide? One option is to train both and compare how well they generalize using
the test set.

Now suppose that the linear model generalizes better, but you want to apply some

regularization to avoid overfitting. The question is: how do you choose the value of
the regularization hyperparameter? One option is to train 100 different models using
100 different values for this hyperparameter. Suppose you find the best hyperparame-
ter value that produces a model with the lowest generalization error, say just 5% error.

So you launch this model into production, but unfortunately it does not perform as
well as expected and produces 15% errors. What just happened?

The problem is that you measured the generalization error multiple times on the test
set, and you adapted the model and hyperparameters to produce the best model for
that set. This means that the model is unlikely to perform as well on new data.

A common solution to this problem is to have a second holdout set called the valida-
tion set. You train multiple models with various hyperparameters using the training
set, you select the model and hyperparameters that perform best on the validation set,
and when you're happy with your model you run a single final test against the test set
to get an estimate of the generalization error.

To avoid “wasting” too much training data in validation sets, a common technique is
to use cross-validation: the training set is split into complementary subsets, and each
model is trained against a different combination of these subsets and validated
against the remaining parts. Once the model type and hyperparameters have been
selected, a final model is trained using these hyperparameters on the full training set,
and the generalized error is measured on the test set.

No Free Lunch Theorem

A model is a simplified version of the observations. The simplifications are meant to
discard the superfluous details that are unlikely to generalize to new instances. How-
ever, to decide what data to discard and what data to keep, you must make assump-
tions. For example, a linear model makes the assumption that the data is
fundamentally linear and that the distance between the instances and the straight line
is just noise, which can safely be ignored.

In a famous 1996 paper,"! David Wolpert demonstrated that if you make absolutely
no assumption about the data, then there is no reason to prefer one model over any
other. This is called the No Free Lunch (NFL) theorem. For some datasets the best

11 “The Lack of A Priori Distinctions Between Learning Algorithms,” D. Wolperts (1996).
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model is a linear model, while for other datasets it is a neural network. There is no
model that is a priori guaranteed to work better (hence the name of the theorem). The
only way to know for sure which model is best is to evaluate them all. Since this is not
possible, in practice you make some reasonable assumptions about the data and you
evaluate only a few reasonable models. For example, for simple tasks you may evalu-
ate linear models with various levels of regularization, and for a complex problem you

may evaluate various neural networks.

Exercises

In this chapter we have covered some of the most important concepts in Machine
Learning. In the next chapters we will dive deeper and write more code, but before we
do, make sure you know how to answer the following questions:

A o e

12.

13.

14.
15.

16.

How would you define Machine Learning?

Can you name four types of problems where it shines?
What is a labeled training set?

What are the two most common supervised tasks?
Can you name four common unsupervised tasks?

What type of Machine Learning algorithm would you use to allow a robot to
walk in various unknown terrains?

What type of algorithm would you use to segment your customers into multiple
groups?

. Would you frame the problem of spam detection as a supervised learning prob-

lem or an unsupervised learning problem?

. What is an online learning system?
10.
11.

What is out-of-core learning?

What type of learning algorithm relies on a similarity measure to make predic-
tions?

What is the difference between a model parameter and a learning algorithm’s
hyperparameter?

What do model-based learning algorithms search for? What is the most common
strategy they use to succeed? How do they make predictions?

Can you name four of the main challenges in Machine Learning?

If your model performs great on the training data but generalizes poorly to new
instances, what is happening? Can you name three possible solutions?

What is a test set and why would you want to use it?

Exercises | 31



17. What is the purpose of a validation set?
18. What can go wrong if you tune hyperparameters using the test set?

19. What is cross-validation and why would you prefer it to a validation set?

Solutions to these exercises are available in Appendix A.
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CHAPTER 2
End-to-End Machine Learning Project

In this chapter, you will go through an example project end to end, pretending to be a
recently hired data scientist in a real estate company.' Here are the main steps you will
go through:

Look at the big picture.

Get the data.

Discover and visualize the data to gain insights.

Prepare the data for Machine Learning algorithms.

Select a model and train it.

Fine-tune your model.

Present your solution.

® NS

Launch, monitor, and maintain your system.

Working with Real Data

When you are learning about Machine Learning it is best to actually experiment with
real-world data, not just artificial datasets. Fortunately, there are thousands of open
datasets to choose from, ranging across all sorts of domains. Here are a few places
you can look to get data:

« Popular open data repositories:

1 The example project is completely fictitious; the goal is just to illustrate the main steps of a Machine Learning
project, not to learn anything about the real estate business.
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— UC Irvine Machine Learning Repository
— Kaggle datasets
— Amazons AWS datasets
+ Meta portals (they list open data repositories):
— http://dataportals.org/
— http://opendatamonitor.eu/
— http://quandl.com/
« Other pages listing many popular open data repositories:
— Wikipedia’s list of Machine Learning datasets
— Quora.com question

— Datasets subreddit

In this chapter we chose the California Housing Prices dataset from the StatLib repos-
itory? (see Figure 2-1). This dataset was based on data from the 1990 California cen-
sus. It is not exactly recent (you could still afford a nice house in the Bay Area at the
time), but it has many qualities for learning, so we will pretend it is recent data. We
also added a categorical attribute and removed a few features for teaching purposes.

Figure 2-1. California housing prices

2 The original dataset appeared in R. Kelley Pace and Ronald Barry, “Sparse Spatial Autoregressions,” Statistics
& Probability Letters 33, no. 3 (1997): 291-297.
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Look at the Big Picture

Welcome to Machine Learning Housing Corporation! The first task you are asked to
perform is to build a model of housing prices in California using the California cen-
sus data. This data has metrics such as the population, median income, median hous-
ing price, and so on for each block group in California. Block groups are the smallest
geographical unit for which the US Census Bureau publishes sample data (a block
group typically has a population of 600 to 3,000 people). We will just call them “dis-
tricts” for short.

Your model should learn from this data and be able to predict the median housing
price in any district, given all the other metrics.

Since you are a well-organized data scientist, the first thing you do
is to pull out your Machine Learning project checklist. You can
start with the one in Appendix B; it should work reasonably well
for most Machine Learning projects but make sure to adapt it to
your needs. In this chapter we will go through many checklist
items, but we will also skip a few, either because they are self-
explanatory or because they will be discussed in later chapters.

Frame the Problem

The first question to ask your boss is what exactly is the business objective; building a
model is probably not the end goal. How does the company expect to use and benefit
from this model? This is important because it will determine how you frame the
problem, what algorithms you will select, what performance measure you will use to
evaluate your model, and how much effort you should spend tweaking it.

Your boss answers that your model’s output (a prediction of a district’s median hous-
ing price) will be fed to another Machine Learning system (see Figure 2-2), along
with many other signals.’ This downstream system will determine whether it is worth
investing in a given area or not. Getting this right is critical, as it directly affects reve-
nue.

3 A piece of information fed to a Machine Learning system is often called a signal in reference to Shannon’s
information theory: you want a high signal/noise ratio.
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Figure 2-2. A Machine Learning pipeline for real estate investments

Pipelines

A sequence of data processing components is called a data pipeline. Pipelines are very
common in Machine Learning systems, since there is a lot of data to manipulate and
many data transformations to apply.

Components typically run asynchronously. Each component pulls in a large amount
of data, processes it, and spits out the result in another data store, and then some time
later the next component in the pipeline pulls this data and spits out its own output,
and so on. Each component is fairly self-contained: the interface between components
is simply the data store. This makes the system quite simple to grasp (with the help of
a data flow graph), and different teams can focus on different components. Moreover,
if a component breaks down, the downstream components can often continue to run
normally (at least for a while) by just using the last output from the broken compo-
nent. This makes the architecture quite robust.

On the other hand, a broken component can go unnoticed for some time if proper
monitoring is not implemented. The data gets stale and the overall system’s perfor-
mance drops.

The next question to ask is what the current solution looks like (if any). It will often
give you a reference performance, as well as insights on how to solve the problem.
Your boss answers that the district housing prices are currently estimated manually
by experts: a team gathers up-to-date information about a district (excluding median
housing prices), and they use complex rules to come up with an estimate. This is
costly and time-consuming, and their estimates are not great; their typical error rate
is about 15%.

Okay, with all this information you are now ready to start designing your system.
First, you need to frame the problem: is it supervised, unsupervised, or Reinforce-
ment Learning? Is it a classification task, a regression task, or something else? Should

36 | Chapter2: End-to-End Machine Learning Project



you use batch learning or online learning techniques? Before you read on, pause and
try to answer these questions for yourself.

Have you found the answers? Let’s see: it is clearly a typical supervised learning task
since you are given labeled training examples (each instance comes with the expected
output, i.e., the district's median housing price). Moreover, it is also a typical regres-
sion task, since you are asked to predict a value. More specifically, this is a multivari-
ate regression problem since the system will use multiple features to make a prediction
(it will use the district’s population, the median income, etc.). In the first chapter, you
predicted life satisfaction based on just one feature, the GDP per capita, so it was a
univariate regression problem. Finally, there is no continuous flow of data coming in
the system, there is no particular need to adjust to changing data rapidly, and the data
is small enough to fit in memory, so plain batch learning should do just fine.

If the data was huge, you could either split your batch learning
work across multiple servers (using the MapReduce technique, as
we will see later), or you could use an online learning technique
instead.

Select a Performance Measure

Your next step is to select a performance measure. A typical performance measure for
regression problems is the Root Mean Square Error (RMSE). It measures the standard
deviation* of the errors the system makes in its predictions. For example, an RMSE
equal to 50,000 means that about 68% of the system’s predictions fall within $50,000
of the actual value, and about 95% of the predictions fall within $100,000 of the actual
value.® Equation 2-1 shows the mathematical formula to compute the RMSE.

Equation 2-1. Root Mean Square Error (RMSE)

1 m

RMSE(X, h) = \/Z.z (h(x<">) _ ya))z

i=

4 The standard deviation, generally denoted o (the Greek letter sigma), is the square root of the variance, which
is the average of the squared deviation from the mean.

5 When a feature has a bell-shaped normal distribution (also called a Gaussian distribution), which is very com-
mon, the “68-95-99.7” rule applies: about 68% of the values fall within 1o of the mean, 95% within 20, and
99.7% within 30.
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Notations

This equation introduces several very common Machine Learning notations that we
will use throughout this book:

o m is the number of instances in the dataset you are measuring the RMSE on.

— For example, if you are evaluating the RMSE on a validation set of 2,000 dis-
tricts, then m = 2,000.

« x is a vector of all the feature values (excluding the label) of the i instance in
the dataset, and y™ is its label (the desired output value for that instance).

— For example, if the first district in the dataset is located at longitude -118.29°,
latitude 33.91°, and it has 1,416 inhabitants with a median income of $38,372,
and the median house value is $156,400 (ignoring the other features for now),

then:
-118.29
.91
L _| 339
1,416
38,372
and:

D = 156,400

« X is a matrix containing all the feature values (excluding labels) of all instances in

the dataset. There is one row per instance and the i* row is equal to the transpose
of x?, noted (x¥)T.¢

— For example, if the first district is as just described, then the matrix X looks

like this:
ey
e’
X = . =(—118.29 33.91 1,416 38,372
(x(1;99))T : : : :
(X(ZOOO))T

6 Recall that the transpose operator flips a column vector into a row vector (and vice versa).
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o his your system’s prediction function, also called a hypothesis. When your system
is given an instance’s feature vector x”, it outputs a predicted value @ = h(x®)
for that instance (§ is pronounced “y-hat”).

— For example, if your system predicts that the median housing price in the first
district is $158,400, then ¥ = h(xV) = 158,400. The prediction error for this
district is 1V — yV = 2,000.

o RMSE(X,h) is the cost function measured on the set of examples using your
hypothesis h.

We use lowercase italic font for scalar values (such as m or y¥) and function names
(such as h), lowercase bold font for vectors (such as x”), and uppercase bold font for
matrices (such as X).

Even though the RMSE is generally the preferred performance measure for regression
tasks, in some contexts you may prefer to use another function. For example, suppose
that there are many outlier districts. In that case, you may consider using the Mean
Absolute Error (also called the Average Absolute Deviation; see Equation 2-2):

Equation 2-2. Mean Absolute Error

MAE(X,h) = — Zl|h y(i)|
m

Both the RMSE and the MAE are ways to measure the distance between two vectors:
the vector of predictions and the vector of target values. Various distance measures,
or norms, are possible:

o Computing the root of a sum of squares (RMSE) corresponds to the Euclidian
norm: it is the notion of distance you are familiar with. It is also called the ¢,
norm, noted || - ||, (or just || - ||).

« Computing the sum of absolutes (MAE) corresponds to the ¢, norm, noted || - ||;.
It is sometimes called the Manhattan norm because it measures the distance
between two points in a city if you can only travel along orthogonal city blocks.

o More generally, the ¢, norm of a vector v containing n elements is defined as
1

| v = (|vo|k + |v1|k +|v,| ) o just gives the cardinality of the vector (i.e.,
the number of elements), and £, gives the maximum absolute value in the vector.

+ The higher the norm index, the more it focuses on large values and neglects small
ones. This is why the RMSE is more sensitive to outliers than the MAE. But when
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outliers are exponentially rare (like in a bell-shaped curve), the RMSE performs
very well and is generally preferred.

Check the Assumptions

Lastly, it is good practice to list and verify the assumptions that were made so far (by
you or others); this can catch serious issues early on. For example, the district prices
that your system outputs are going to be fed into a downstream Machine Learning
system, and we assume that these prices are going to be used as such. But what if the
downstream system actually converts the prices into categories (e.g., “cheap,
“medium,” or “expensive”) and then uses those categories instead of the prices them-
selves? In this case, getting the price perfectly right is not important at all; your sys-
tem just needs to get the category right. If that’s so, then the problem should have
been framed as a classification task, not a regression task. You don’t want to find this
out after working on a regression system for months.

Fortunately, after talking with the team in charge of the downstream system, you are
confident that they do indeed need the actual prices, not just categories. Great! You're
all set, the lights are green, and you can start coding now!

Get the Data

Its time to get your hands dirty. Don’t hesitate to pick up your laptop and walk
through the following code examples in a Jupyter notebook. The full Jupyter note-
book is available at https://github.com/ageron/handson-ml.

Create the Workspace

First you will need to have Python installed. It is probably already installed on your
system. If not, you can get it at https://www.python.org/.”

Next you need to create a workspace directory for your Machine Learning code and
datasets. Open a terminal and type the following commands (after the $ prompts):

$ export ML_PATH="$HOME/ml" # You can change the path if you prefer
$ mkdir -p SML_PATH

You will need a number of Python modules: Jupyter, NumPy, Pandas, Matplotlib, and
Scikit-Learn. If you already have Jupyter running with all these modules installed,
you can safely skip to “Download the Data” on page 43. If you don’t have them yet,
there are many ways to install them (and their dependencies). You can use your sys-
tem’s packaging system (e.g., apt-get on Ubuntu, or MacPorts or HomeBrew on

7 The latest version of Python 3 is reccommended. Python 2.7+ should work fine too, but it is deprecated.
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macOS), install a Scientific Python distribution such as Anaconda and use its packag-
ing system, or just use Python’s own packaging system, pip, which is included by
default with the Python binary installers (since Python 2.7.9).% You can check to see if
pip is installed by typing the following command:

$ pip3 --version
pip 9.0.1 from [...]/lib/python3.5/site-packages (python 3.5)

You should make sure you have a recent version of pip installed, at the very least >1.4
to support binary module installation (a.k.a. wheels). To upgrade the pip module,

type:’

$ pip3 install --upgrade pip
Collecting pip

[...]

Successfully installed pip-9.0.1

Creating an Isolated Environment

If you would like to work in an isolated environment (which is strongly recom-
mended so you can work on different projects without having conflicting library ver-
sions), install virtualenv by running the following pip command:

$ pip3 install --user --upgrade virtualenv
Collecting virtualenv

[...]

Successfully installed virtualenv
Now you can create an isolated Python environment by typing:

$ cd $ML_PATH

$ virtualenv env

Using base prefix '[...]'

New python executable in [...]/ml/env/bin/python3.5
Also creating executable in [...]/ml/env/bin/python
Installing setuptools, pip, wheel...done.

Now every time you want to activate this environment, just open a terminal and type:

$ cd $ML_PATH
$ source env/bin/activate

While the environment is active, any package you install using pip will be installed in
this isolated environment, and Python will only have access to these packages (if you
also want access to the system’s site packages, you should create the environment

®©

We will show the installation steps using pip in a bash shell on a Linux or macOS system. You may need to
adapt these commands to your own system. On Windows, we recommend installing Anaconda instead.

9 You may need to have administrator rights to run this command; if so, try prefixing it with sudo.
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using virtualenv’s --system-site-packages option). Check out virtualenv’s docu-
mentation for more information.

Now you can install all the required modules and their dependencies using this sim-
ple pip command:

$ pip3 install --upgrade jupyter matplotlib numpy pandas scipy scikit-learn
Collecting jupyter

Downloading jupyter-1.0.0-py2.py3-none-any.whl
Collecting matplotlib

[...]

To check your installation, try to import every module like this:
$ python3 -c "import jupyter, matplotlib, numpy, pandas, scipy, sklearn"
There should be no output and no error. Now you can fire up Jupyter by typing:

$ jupyter notebook

[I 15:24 NotebookApp] Serving notebooks from local directory: [...]/ml

[I 15:24 NotebookApp] 0 active kernels

[I 15:24 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/
[I 15:24 NotebookApp] Use Control-C to stop this server and shut down all
kernels (twice to skip confirmation).

A Jupyter server is now running in your terminal, listening to port 8888. You can visit
this server by opening your web browser to http://localhost:8888/ (this usually hap-
pens automatically when the server starts). You should see your empty workspace
directory (containing only the env directory if you followed the preceding virtualenv
instructions).

Now create a new Python notebook by clicking on the New button and selecting the
appropriate Python version'® (see Figure 2-3).

This does three things: first, it creates a new notebook file called Untitled.ipynb in
your workspace; second, it starts a Jupyter Python kernel to run this notebook; and
third, it opens this notebook in a new tab. You should start by renaming this note-
book to “Housing” (this will automatically rename the file to Housing.ipynb) by click-
ing Untitled and typing the new name.

10 Note that Jupyter can handle multiple versions of Python, and even many other languages such as R or
Octave.
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Figure 2-3. Your workspace in Jupyter

A notebook contains a list of cells. Each cell can contain executable code or formatted

text. Right now the notebook contains only one empty code cell, labeled “In [1]:”. Try
typing print("Hello world!") in the cell, and click on the play button (see
Figure 2-4) or press Shift-Enter. This sends the current cell to this notebook’s Python
kernel, which runs it and returns the output. The result is displayed below the cell,
and since we reached the end of the notebook, a new cell is automatically created. Go

through the User Interface Tour from Jupyter’s Help menu to learn the basics.

ZJjupyter Housing €—1

File Edit View Insert Cell Kernel Help

B + x @B 4 ¥ M B C Code

2 3

In [1]: print("Hello world!"

Hello world!

In [ ]:

A
v

CellToolbar

Logout

| Python 3 O

Figure 2-4. Hello world Python notebook

Download the Data

In typical environments your data would be available in a relational database (or

some other common datastore) and spread across multiple tables/documents/files. To

Get the Data
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access it, you would first need to get your credentials and access authorizations," and
familiarize yourself with the data schema. In this project, however, things are much
simpler: you will just download a single compressed file, housing.tgz, which contains a
comma-separated value (CSV) file called housing.csv with all the data.

You could use your web browser to download it, and run tar xzf housing.tgz to
decompress the file and extract the CSV file, but it is preferable to create a small func-
tion to do that. It is useful in particular if data changes regularly, as it allows you to
write a small script that you can run whenever you need to fetch the latest data (or
you can set up a scheduled job to do that automatically at regular intervals). Auto-
mating the process of fetching the data is also useful if you need to install the dataset
on multiple machines.

Here is the function to fetch the data:"?

import
import
from import urllib

DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml/master/"
HOUSING_PATH = "datasets/housing"
HOUSING_URL = DOWNLOAD_ROOT + HOUSING_PATH + "/housing.tgz"

def fetch_housing_data(housing_ur1=HOUSING_URL, housing_path=HOUSING_PATH):

if not os.path.isdir(housing_path):
os.makedirs(housing_path)

tgz_path = os.path.join(housing_path, "housing.tgz")
urllib.request.urlretrieve(housing_url, tgz_path)
housing_tgz = tarfile.open(tgz_path)
housing_tgz.extractall(path=housing_path)
housing_tgz.close()

Now when you call fetch_housing_data(), it creates a datasets/housing directory in
your workspace, downloads the housing.tgz file, and extracts the housing.csv from it in
this directory.

Now let’s load the data using Pandas. Once again you should write a small function to
load the data:

import as

def load_housing_data(housing_path=HOUSING_PATH):
csv_path = os.path.join(housing_path, "housing.csv")
return pd.read_csv(csv_path)

11 You might also need to check legal constraints, such as private fields that should never be copied to unsafe
datastores.

12 In a real project you would save this code in a Python file, but for now you can just write it in your Jupyter
notebook.
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This function returns a Pandas DataFrame object containing all the data.

Take a Quick Look at the Data Structure

Lets take a look at the top five rows using the DataFrame’s head() method (see

Figure 2-5).

In [5]: housing = load_housing data()
housing.head()

Out[5]: longitude | latitude | housing_median_age | total_rooms | total_bedrooms | populatioi
0|-122.23 |37.88 |41.0 880.0 129.0 322.0
1(-12222 |37.86 |21.0 7099.0 1106.0 2401.0
2|-122.24 |37.85 |52.0 1467.0 190.0 496.0
3|-122.25 |37.85 |[52.0 1274.0 235.0 558.0
4|-122.25 |37.85 |[52.0 1627.0 280.0 565.0

Figure 2-5. Top five rows in the dataset

Each row represents one district. There are 10 attributes (you can see the first 6 in the
screenshot): longitude, latitude, housing_median_age, total_rooms, total_bed
rooms, population, households, and
ocean_proximity.

median_income, median_house_value,

The info() method is useful to get a quick description of the data, in particular the
total number of rows, and each attribute’s type and number of non-null values (see
Figure 2-6).

In [6]: housing.info

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639

Data columns (total 10 columns):

longitude 20640 non-null float64
latitude 20640 non-null float64
housing median_age 20640 non-null floaté64
total_rooms 20640 non-null float64
total_ bedrooms 20433 non-null float64
population 20640 non-null float64
households 20640 non-null float64
median_income 20640 non-null float64
median house value 20640 non-null float64
ocean_proximity 20640 non-null object

dtypes: float64(9), object(1l)
memory usage: l.6+ MB

Figure 2-6. Housing info
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There are 20,640 instances in the dataset, which means that it is fairly small by
Machine Learning standards, but it’s perfect to get started. Notice that the total_bed
rooms attribute has only 20,433 non-null values, meaning that 207 districts are miss-
ing this feature. We will need to take care of this later.

All attributes are numerical, except the ocean_proximity field. Its type is object, so it
could hold any kind of Python object, but since you loaded this data from a CSV file
you know that it must be a text attribute. When you looked at the top five rows, you
probably noticed that the values in that column were repetitive, which means that it is
probably a categorical attribute. You can find out what categories exist and how many
districts belong to each category by using the value_counts() method:

>>> housing["ocean_proximity"].value_counts()

<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5

Name: ocean_proximity, dtype: inté64

Lets look at the other fields. The describe() method shows a summary of the
numerical attributes (Figure 2-7).

In [8]: housing.describe()

Out[8]: longitude latitude housing_median_age | total rooms |total_bedrc
count | 20640.000000 | 20640.000000 | 20640.000000 20640.000000 | 20433.000C
mean |-119.569704 |35.631861 28.639486 2635.763081 |537.87055:8
std |2.003532 2.135952 12.585558 2181.615252 |421.38507(
min |-124.350000 |32.540000 1.000000 2.000000 1.000000
25% |-121.800000 |33.930000 18.000000 1447.750000 |296.00000C
50% (-118.490000 |34.260000 29.000000 2127.000000 |435.00000C
75% |-118.010000 |37.710000 37.000000 3148.000000 |647.00000C
max |-114.310000 |41.950000 52.000000 39320.000000 | 6445.0000C

Figure 2-7. Summary of each numerical attribute

The count, mean, min, and max rows are self-explanatory. Note that the null values are
ignored (so, for example, count of total_bedrooms is 20,433, not 20,640). The std
row shows the standard deviation (which measures how dispersed the values are).
The 25%, 50%, and 75% rows show the corresponding percentiles: a percentile indi-
cates the value below which a given percentage of observations in a group of observa-
tions falls. For example, 25% of the districts have a housing_median_age lower than
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18, while 50% are lower than 29 and 75% are lower than 37. These are often called the
25" percentile (or 1% quartile), the median, and the 75" percentile (or 3™ quartile).

Another quick way to get a feel of the type of data you are dealing with is to plot a
histogram for each numerical attribute. A histogram shows the number of instances
(on the vertical axis) that have a given value range (on the horizontal axis). You can
either plot this one attribute at a time, or you can call the hist() method on the
whole dataset, and it will plot a histogram for each numerical attribute (see
Figure 2-8). For example, you can see that slightly over 800 districts have a
median_house_value equal to about $500,000.

%matplotlib inline  # only in a Jupyter notebook

import as
housing.hist(bins=50, figsize=(20,15))
plt.show()

Figure 2-8. A histogram for each numerical attribute
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The hist() method relies on Matplotlib, which in turn relies on a
user-specified graphical backend to draw on your screen. So before
you can plot anything, you need to specify which backend Matplot-
lib should use. The simplest option is to use Jupyter’s magic com-
mand %matplotlib inline. This tells Jupyter to set up Matplotlib
so it uses Jupyter’s own backend. Plots are then rendered within the
notebook itself. Note that calling show() is optional in a Jupyter
notebook, as Jupyter will automatically display plots when a cell is
executed.

Notice a few things in these histograms:

1. First, the median income attribute does not look like it is expressed in US dollars

(USD). After checking with the team that collected the data, you are told that the
data has been scaled and capped at 15 (actually 15.0001) for higher median
incomes, and at 0.5 (actually 0.4999) for lower median incomes. Working with
preprocessed attributes is common in Machine Learning, and it is not necessarily
a problem, but you should try to understand how the data was computed.

. The housing median age and the median house value were also capped. The lat-

ter may be a serious problem since it is your target attribute (your labels). Your
Machine Learning algorithms may learn that prices never go beyond that limit.
You need to check with your client team (the team that will use your system’s out-
put) to see if this is a problem or not. If they tell you that they need precise pre-
dictions even beyond $500,000, then you have mainly two options:

a. Collect proper labels for the districts whose labels were capped.

b. Remove those districts from the training set (and also from the test set, since
your system should not be evaluated poorly if it predicts values beyond
$500,000).

These attributes have very different scales. We will discuss this later in this chap-
ter when we explore feature scaling.

Finally, many histograms are tail heavy: they extend much farther to the right of
the median than to the left. This may make it a bit harder for some Machine
Learning algorithms to detect patterns. We will try transforming these attributes
later on to have more bell-shaped distributions.

Hopefully you now have a better understanding of the kind of data you are dealing
with.
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Wait! Before you look at the data any further, you need to create a
test set, put it aside, and never look at it.

Create a Test Set

It may sound strange to voluntarily set aside part of the data at this stage. After all,
you have only taken a quick glance at the data, and surely you should learn a whole
lot more about it before you decide what algorithms to use, right? This is true, but
your brain is an amazing pattern detection system, which means that it is highly
prone to overfitting: if you look at the test set, you may stumble upon some seemingly
interesting pattern in the test data that leads you to select a particular kind of
Machine Learning model. When you estimate the generalization error using the test
set, your estimate will be too optimistic and you will launch a system that will not
perform as well as expected. This is called data snooping bias.

Creating a test set is theoretically quite simple: just pick some instances randomly,
typically 20% of the dataset, and set them aside:

import as

def split_train_test(data, test_ratio):
shuffled_indices = np.random.permutation(len(data))
test_set_size = int(len(data) * test_ratio)
test_indices = shuffled_indices[:test_set_size]
train_indices = shuffled_indices[test_set_size:]
return data.iloc[train_indices], data.iloc[test_indices]

You can then use this function like this:

>>> train_set, test_set = split_train_test(housing, 0.2)

>>> print(len(train_set), "train +", len(test_set), "test")

16512 train + 4128 test
Well, this works, but it is not perfect: if you run the program again, it will generate a
different test set! Over time, you (or your Machine Learning algorithms) will get to
see the whole dataset, which is what you want to avoid.

One solution is to save the test set on the first run and then load it in subsequent
runs. Another option is to set the random number generator’s seed (e.g., np.ran
dom.seed(42))" before calling np.random.permutation(), so that it always generates
the same shuffled indices.

13 You will often see people set the random seed to 42. This number has no special property, other than to be
The Answer to the Ultimate Question of Life, the Universe, and Everything.
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But both these solutions will break next time you fetch an updated dataset. A com-
mon solution is to use each instance’s identifier to decide whether or not it should go
in the test set (assuming instances have a unique and immutable identifier). For
example, you could compute a hash of each instance’s identifier, keep only the last
byte of the hash, and put the instance in the test set if this value is lower or equal to
51 (~20% of 256). This ensures that the test set will remain consistent across multiple
runs, even if you refresh the dataset. The new test set will contain 20% of the new
instances, but it will not contain any instance that was previously in the training set.
Here is a possible implementation:

import

def test_set_check(identifier, test_ratio, hash):
return hash(np.int64(identifier)).digest()[-1] < 256 * test_ratio

def split_train_test_by_id(data, test_ratio, id_column, hash=hashlib.md5):
ids = data[id_column]
in_test_set = ids.apply(lambda id_: test_set_check(id_, test_ratio, hash))
return data.loc[~in_test_set], data.loc[in_test_set]
Unfortunately, the housing dataset does not have an identifier column. The simplest
solution is to use the row index as the ID:

housing_with_id = housing.reset_index() # adds an “index' column

train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "index")
If you use the row index as a unique identifier, you need to make sure that new data
gets appended to the end of the dataset, and no row ever gets deleted. If this is not
possible, then you can try to use the most stable features to build a unique identifier.
For example, a district’s latitude and longitude are guaranteed to be stable for a few
million years, so you could combine them into an ID like so:"*

housing_with_id["1d"] = housing["longitude"] * 1000 + housing["latitude"]

train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "id")
Scikit-Learn provides a few functions to split datasets into multiple subsets in various
ways. The simplest function is train_test_split, which does pretty much the same
thing as the function split_train_test defined earlier, with a couple of additional
features. First there is a random_state parameter that allows you to set the random
generator seed as explained previously, and second you can pass it multiple datasets
with an identical number of rows, and it will split them on the same indices (this is
very useful, for example, if you have a separate DataFrame for labels):

14 The location information is actually quite coarse, and as a result many districts will have the exact same ID, so
they will end up in the same set (test or train). This introduces some unfortunate sampling bias.
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from import train_test_split

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

So far we have considered purely random sampling methods. This is generally fine if
your dataset is large enough (especially relative to the number of attributes), but if it
is not, you run the risk of introducing a significant sampling bias. When a survey
company decides to call 1,000 people to ask them a few questions, they don't just pick
1,000 people randomly in a phone booth. They try to ensure that these 1,000 people
are representative of the whole population. For example, the US population is com-
posed of 51.3% female and 48.7% male, so a well-conducted survey in the US would
try to maintain this ratio in the sample: 513 female and 487 male. This is called strati-
fied sampling: the population is divided into homogeneous subgroups called strata,
and the right number of instances is sampled from each stratum to guarantee that the
test set is representative of the overall population. If they used purely random sam-
pling, there would be about 12% chance of sampling a skewed test set with either less
than 49% female or more than 54% female. Either way, the survey results would be
significantly biased.

Suppose you chatted with experts who told you that the median income is a very
important attribute to predict median housing prices. You may want to ensure that
the test set is representative of the various categories of incomes in the whole dataset.
Since the median income is a continuous numerical attribute, you first need to create
an income category attribute. Let’s look at the median income histogram more closely
(see Figure 2-9):

Figure 2-9. Histogram of income categories

Most median income values are clustered around 2-5 (tens of thousands of dollars),
but some median incomes go far beyond 6. It is important to have a sufficient num-
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ber of instances in your dataset for each stratum, or else the estimate of the stratum’s
importance may be biased. This means that you should not have too many strata, and
each stratum should be large enough. The following code creates an income category
attribute by dividing the median income by 1.5 (to limit the number of income cate-
gories), and rounding up using ceil (to have discrete categories), and then merging
all the categories greater than 5 into category 5:
housing["income _cat"] = np.ceil(housing["median_income"] / 1.5)
housing["income_cat"].where(housing["income_cat"] < 5, 5.0, inplace=True)
Now you are ready to do stratified sampling based on the income category. For this
you can use Scikit-Learn’s StratifiedShuffleSplit class:

from import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing["income cat"]):
strat_train_set = housing.loc[train_index]
strat_test_set = housing.loc[test_index]

Let’s see if this worked as expected. You can start by looking at the income category
proportions in the full housing dataset:

>>> housing["income_cat"].value_counts() / len(housing)

3.0 0.350581
2.0 0.318847
4.0 0.176308
5.0 0.114438
1.0 0.039826

Name: income_cat, dtype: float64

With similar code you can measure the income category proportions in the test set.
Figure 2-10 compares the income category proportions in the overall dataset, in the
test set generated with stratified sampling, and in a test set generated using purely
random sampling. As you can see, the test set generated using stratified sampling has
income category proportions almost identical to those in the full dataset, whereas the
test set generated using purely random sampling is quite skewed.

Overall |Random |Stratified | Rand. %error | Strat. %error
1.0/0.039826 | 0.040213 | 0.039738 | 0.973236 -0.219137
2.0|0.318847|0.324370|0.318876 |1.732260 0.009032
3.0|0.350581 | 0.358527 | 0.350618 |2.266446 0.010408
4.0|0.176308 |0.167393 | 0.176399 |-5.056334 0.051717
5.0|0.114438|0.109496 | 0.114369 |-4.318374 -0.060464

Figure 2-10. Sampling bias comparison of stratified versus purely random sampling
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Now you should remove the income_cat attribute so the data is back to its original
state:

for set in (strat_train_set, strat_test_set):
set.drop(["income_cat"], axis=1, inplace=True)
We spent quite a bit of time on test set generation for a good reason: this is an often
neglected but critical part of a Machine Learning project. Moreover, many of these
ideas will be useful later when we discuss cross-validation. Now it’s time to move on
to the next stage: exploring the data.

Discover and Visualize the Data to Gain Insights

So far you have only taken a quick glance at the data to get a general understanding of
the kind of data you are manipulating. Now the goal is to go a little bit more in depth.

First, make sure you have put the test set aside and you are only exploring the train-
ing set. Also, if the training set is very large, you may want to sample an exploration
set, to make manipulations easy and fast. In our case, the set is quite small so you can
just work directly on the full set. Let’s create a copy so you can play with it without
harming the training set:

housing = strat_train_set.copy()

Visualizing Geographical Data

Since there is geographical information (latitude and longitude), it is a good idea to
create a scatterplot of all districts to visualize the data (Figure 2-11):

housing.plot(kind="scatter", x="longitude", y="latitude")

Figure 2-11. A geographical scatterplot of the data
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This looks like California all right, but other than that it is hard to see any particular
pattern. Setting the alpha option to 0.1 makes it much easier to visualize the places
where there is a high density of data points (Figure 2-12):

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1)

Figure 2-12. A better visualization highlighting high-density areas

Now that’s much better: you can clearly see the high-density areas, namely the Bay
Area and around Los Angeles and San Diego, plus a long line of fairly high density in
the Central Valley, in particular around Sacramento and Fresno.

More generally, our brains are very good at spotting patterns on pictures, but you
may need to play around with visualization parameters to make the patterns stand
out.

Now let’s look at the housing prices (Figure 2-13). The radius of each circle represents
the district’s population (option s), and the color represents the price (option c). We
will use a predefined color map (option cmap) called jet, which ranges from blue
(low values) to red (high prices):*®
housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
s=housing["population"]/100, label="population",

c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,

)
plt.legend()

15 If you are reading this in grayscale, grab a red pen and scribble over most of the coastline from the Bay Area
down to San Diego (as you might expect). You can add a patch of yellow around Sacramento as well.
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Figure 2-13. California housing prices

This image tells you that the housing prices are very much related to the location
(e.g., close to the ocean) and to the population density, as you probably knew already.
It will probably be useful to use a clustering algorithm to detect the main clusters, and
add new features that measure the proximity to the cluster centers. The ocean prox-
imity attribute may be useful as well, although in Northern California the housing
prices in coastal districts are not too high, so it is not a simple rule.

Looking for Correlations

Since the dataset is not too large, you can easily compute the standard correlation
coefficient (also called Pearsons r) between every pair of attributes using the corr()
method:

corr_matrix = housing.corr()
Now let’s look at how much each attribute correlates with the median house value:

>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000

median_1income 0.687170
total_rooms 0.135231
housing_median_age 0.114220
households 0.064702
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total_bedrooms 0.047865

population -0.026699
longitude -0.047279
latitude -0.142826

Name: median_house_value, dtype: float64

The correlation coefficient ranges from -1 to 1. When it is close to 1, it means that
there is a strong positive correlation; for example, the median house value tends to go
up when the median income goes up. When the coefficient is close to -1, it means
that there is a strong negative correlation; you can see a small negative correlation
between the latitude and the median house value (i.e., prices have a slight tendency to
go down when you go north). Finally, coefficients close to zero mean that there is no
linear correlation. Figure 2-14 shows various plots along with the correlation coeffi-
cient between their horizontal and vertical axes.

1 0.8 04 0 04 -0.8 -1

Figure 2-14. Standard correlation coefficient of various datasets (source: Wikipedia;
public domain image)

The correlation coefficient only measures linear correlations (“if x
goes up, then y generally goes up/down”). It may completely miss
out on nonlinear relationships (e.g., “if x is close to zero then y gen-

\ erally goes up”). Note how all the plots of the bottom row have a
correlation coefficient equal to zero despite the fact that their axes
are clearly not independent: these are examples of nonlinear rela-
tionships. Also, the second row shows examples where the correla-
tion coefficient is equal to 1 or —1; notice that this has nothing to
do with the slope. For example, your height in inches has a correla-
tion coefticient of 1 with your height in feet or in nanometers.

Another way to check for correlation between attributes is to use Pandas’
scatter_matrix function, which plots every numerical attribute against every other
numerical attribute. Since there are now 11 numerical attributes, you would get 11* =
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121 plots, which would not fit on a page, so lets just focus on a few promising
attributes that seem most correlated with the median housing value (Figure 2-15):

from import scatter_matrix

attributes = ["median_house_value", "median_income", "total_rooms",
"housing_median_age"]
scatter_matrix(housing[attributes], figsize=(12, 8))

Figure 2-15. Scatter matrix

The main diagonal (top left to bottom right) would be full of straight lines if Pandas
plotted each variable against itself, which would not be very useful. So instead Pandas
displays a histogram of each attribute (other options are available; see Pandas’ docu-
mentation for more details).

The most promising attribute to predict the median house value is the median
income, so let’s zoom in on their correlation scatterplot (Figure 2-16):

housing.plot(kind="scatter", x="median_income", y="median_house_value",
alpha=0.1)
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Figure 2-16. Median income versus median house value

This plot reveals a few things. First, the correlation is indeed very strong; you can
clearly see the upward trend and the points are not too dispersed. Second, the price
cap that we noticed earlier is clearly visible as a horizontal line at $500,000. But this
plot reveals other less obvious straight lines: a horizontal line around $450,000,
another around $350,000, perhaps one around $280,000, and a few more below that.
You may want to try removing the corresponding districts to prevent your algorithms
from learning to reproduce these data quirks.

Experimenting with Attribute Combinations

Hopefully the previous sections gave you an idea of a few ways you can explore the
data and gain insights. You identified a few data quirks that you may want to clean up
before feeding the data to a Machine Learning algorithm, and you found interesting
correlations between attributes, in particular with the target attribute. You also
noticed that some attributes have a tail-heavy distribution, so you may want to trans-
form them (e.g., by computing their logarithm). Of course, your mileage will vary
considerably with each project, but the general ideas are similar.

One last thing you may want to do before actually preparing the data for Machine
Learning algorithms is to try out various attribute combinations. For example, the
total number of rooms in a district is not very useful if you don’t know how many
households there are. What you really want is the number of rooms per household.
Similarly, the total number of bedrooms by itself is not very useful: you probably
want to compare it to the number of rooms. And the population per household also
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seems like an interesting attribute combination to look at. Let’s create these new
attributes:

housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"]

And now let’s look at the correlation matrix again:

>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value 1.000000

median_income 0.687170
rooms_per_household 0.199343
total_rooms 0.135231
housing_median_age 0.114220
households 0.064702
total_bedrooms 0.047865
population_per_household -0.021984
population -0.026699
longitude -0.047279
latitude -0.142826
bedrooms_per_room -0.260070

Name: median_house_value, dtype: float64

Hey, not bad! The new bedrooms_per_roonm attribute is much more correlated with
the median house value than the total number of rooms or bedrooms. Apparently
houses with a lower bedroom/room ratio tend to be more expensive. The number of
rooms per household is also more informative than the total number of rooms in a
district—obviously the larger the houses, the more expensive they are.

This round of exploration does not have to be absolutely thorough; the point is to
start off on the right foot and quickly gain insights that will help you get a first rea-
sonably good prototype. But this is an iterative process: once you get a prototype up
and running, you can analyze its output to gain more insights and come back to this
exploration step.

Prepare the Data for Machine Learning Algorithms

It’s time to prepare the data for your Machine Learning algorithms. Instead of just
doing this manually, you should write functions to do that, for several good reasons:

« This will allow you to reproduce these transformations easily on any dataset (e.g.,
the next time you get a fresh dataset).

+ You will gradually build a library of transformation functions that you can reuse
in future projects.

 You can use these functions in your live system to transform the new data before
feeding it to your algorithms.
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« This will make it possible for you to easily try various transformations and see
which combination of transformations works best.

But first let’s revert to a clean training set (by copying strat_train_set once again),
and let’s separate the predictors and the labels since we don’t necessarily want to apply
the same transformations to the predictors and the target values (note that drop()
creates a copy of the data and does not affect strat_train_set):

housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()

Data Cleaning

Most Machine Learning algorithms cannot work with missing features, so let’s create
a few functions to take care of them. You noticed earlier that the total_bedrooms
attribute has some missing values, so let’s fix this. You have three options:

o Getrid of the corresponding districts.

« Get rid of the whole attribute.

o Set the values to some value (zero, the mean, the median, etc.).

You can accomplish these easily using DataFrame’s dropna(), drop(), and fillna()
methods:

housing.dropna(subset=["total_bedrooms"]) # option 1

housing.drop("total_bedrooms", axis=1) # option 2
median = housing["total_bedrooms"].median()
housing["total_bedrooms"].fillna(median) # option 3

If you choose option 3, you should compute the median value on the training set, and
use it to fill the missing values in the training set, but also don’t forget to save the
median value that you have computed. You will need it later to replace missing values
in the test set when you want to evaluate your system, and also once the system goes
live to replace missing values in new data.

Scikit-Learn provides a handy class to take care of missing values: Imputer. Here is
how to use it. First, you need to create an Imputer instance, specifying that you want
to replace each attribute’s missing values with the median of that attribute:

from import Imputer
imputer = Imputer(strategy="median")

Since the median can only be computed on numerical attributes, we need to create a
copy of the data without the text attribute ocean_proximity:

housing_num = housing.drop("ocean_proximity", axis=1)
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Now you can fit the imputer instance to the training data using the fit() method:
imputer.fit(housing_num)

The imputer has simply computed the median of each attribute and stored the result
in its statistics_ instance variable. Only the total_bedrooms attribute had missing
values, but we cannot be sure that there won't be any missing values in new data after
the system goes live, so it is safer to apply the imputer to all the numerical attributes:

>>> imputer.statistics_

array([ -118.51 , 34.26 , 29. , 2119. , 433. , 1164. , 408. , 3.5414])

>>> housing_num.median().values

array([ -118.51 , 34.26 , 29. , 2119. , 433. , 1164. , 408. , 3.5414])
Now you can use this “trained” imputer to transform the training set by replacing
missing values by the learned medians:

X = imputer.transform(housing_num)

The result is a plain Numpy array containing the transformed features. If you want to
put it back into a Pandas DataFrame, it's simple:

housing_tr = pd.DataFrame(X, columns=housing_num.columns)

Scikit-Learn Design

Scikit-Learn’s API is remarkably well designed. The main design principles are:'¢

« Consistency. All objects share a consistent and simple interface:

— Estimators. Any object that can estimate some parameters based on a dataset
is called an estimator (e.g., an imputer is an estimator). The estimation itself is
performed by the fit() method, and it takes only a dataset as a parameter (or
two for supervised learning algorithms; the second dataset contains the
labels). Any other parameter needed to guide the estimation process is con-
sidered a hyperparameter (such as an imputer’s strategy), and it must be set
as an instance variable (generally via a constructor parameter).

— Transformers. Some estimators (such as an imputer) can also transform a
dataset; these are called transformers. Once again, the API is quite simple: the
transformation is performed by the transform() method with the dataset to
transform as a parameter. It returns the transformed dataset. This transforma-
tion generally relies on the learned parameters, as is the case for an imputer.
All transformers also have a convenience method called fit_transform()

16 For more details on the design principles, see “API design for machine learning software: experiences from
the scikit-learn project;” L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Miiller, et al. (2013).
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that is equivalent to calling fit() and then transform() (but sometimes
fit_transform() is optimized and runs much faster).

— Predictors. Finally, some estimators are capable of making predictions given a
dataset; they are called predictors. For example, the LinearRegression model
in the previous chapter was a predictor: it predicted life satisfaction given a
country’s GDP per capita. A predictor has a predict() method that takes a
dataset of new instances and returns a dataset of corresponding predictions. It
also has a score() method that measures the quality of the predictions given
a test set (and the corresponding labels in the case of supervised learning
algorithms)."”

o Inspection. All the estimator’s hyperparameters are accessible directly via public
instance variables (e.g., imputer.strategy), and all the estimator’s learned
parameters are also accessible via public instance variables with an underscore
suffix (e.g., imputer.statistics_).

 Nonproliferation of classes. Datasets are represented as NumPy arrays or SciPy
sparse matrices, instead of homemade classes. Hyperparameters are just regular
Python strings or numbers.

o Composition. Existing building blocks are reused as much as possible. For
example, it is easy to create a Pipeline estimator from an arbitrary sequence of
transformers followed by a final estimator, as we will see.

« Sensible defaults. Scikit-Learn provides reasonable default values for most
parameters, making it easy to create a baseline working system quickly.

Handling Text and Categorical Attributes

Earlier we left out the categorical attribute ocean_proximity because it is a text
attribute so we cannot compute its median. Most Machine Learning algorithms pre-
fer to work with numbers anyway, so let’s convert these text labels to numbers.

Scikit-Learn provides a transformer for this task called LabelEncoder:

>>> from import LabelEncoder

>>> encoder = LabelEncoder()

>>> housing_cat = housing["ocean_proximity"]

>>> housing_cat_encoded = encoder.fit_transform(housing_cat)
>>> housing_cat_encoded

array([1, 1, 4, ..., 1, 0, 3])

17 Some predictors also provide methods to measure the confidence of their predictions.
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This is better: now we can use this numerical data in any ML algorithm. You can look
at the mapping that this encoder has learned using the classes_ attribute (“<1H
OCEAN” is mapped to 0, “INLAND” is mapped to 1, etc.):

>>> print(encoder.classes_)
['<1H OCEAN' 'INLAND' 'ISLAND' 'NEAR BAY' 'NEAR OCEAN']

One issue with this representation is that ML algorithms will assume that two nearby
values are more similar than two distant values. Obviously this is not the case (for
example, categories 0 and 4 are more similar than categories 0 and 1). To fix this
issue, a common solution is to create one binary attribute per category: one attribute
equal to 1 when the category is “<1H OCEAN” (and 0 otherwise), another attribute
equal to 1 when the category is “INLAND” (and O otherwise), and so on. This is
called one-hot encoding, because only one attribute will be equal to 1 (hot), while the
others will be 0 (cold).

Scikit-Learn provides a OneHotEncoder encoder to convert integer categorical values
into one-hot vectors. Lets encode the categories as one-hot vectors. Note that
fit_transform() expects a 2D array, but housing_cat_encoded is a 1D array, so we
need to reshape it:'®

>>> from import OneHotEncoder
>>> encoder = OneHotEncoder()
>>> housing_cat_1lhot = encoder.fit_transform(housing_cat_encoded.reshape(-1,1))
>>> housing_cat_1hot
<16513x5 sparse matrix of type '<class 'numpy.float64's'
with 16513 stored elements in Compressed Sparse Row format>

Notice that the output is a SciPy sparse matrix, instead of a NumPy array. This is very
useful when you have categorical attributes with thousands of categories. After one-
hot encoding we get a matrix with thousands of columns, and the matrix is full of
zeros except for one 1 per row. Using up tons of memory mostly to store zeros would
be very wasteful, so instead a sparse matrix only stores the location of the nonzero
elements. You can use it mostly like a normal 2D array," but if you really want to con-
vert it to a (dense) NumPy array, just call the toarray() method:

>>> housing_cat_1lhot.toarray()
array([[ 0., 1., 0., 0.,
[ 0., 1., 6., 0.,
[ 0., 0., 0., 0.,

-

S c o)
—
.

-

cey

[o6., 1., 0., 0., 0.],

18 NumPy’s reshape() function allows one dimension to be -1, which means “unspecified”: the value is inferred
from the length of the array and the remaining dimensions.

19 See SciPy’s documentation for more details.
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[1., 0., 0., 0., 0.],

[e., 0., 0., 1., 0.1])
We can apply both transformations (from text categories to integer categories, then
from integer categories to one-hot vectors) in one shot using the LabelBinarizer
class:

>>> from import LabelBinarizer
>>> encoder = LabelBinarizer()
>>> housing_cat_1lhot = encoder.fit_transform(housing_cat)
>>> housing_cat_1hot
array([[o, 1, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 1, 0, 0, 0],
[1, 0, 0, 0, 0],
[0, 0, 0, 1, 0]1])

Note that this returns a dense NumPy array by default. You can get a sparse matrix
instead by passing sparse_output=True to the LabelBinarizer constructor.

Custom Transformers

Although Scikit-Learn provides many useful transformers, you will need to write
your own for tasks such as custom cleanup operations or combining specific
attributes. You will want your transformer to work seamlessly with Scikit-Learn func-
tionalities (such as pipelines), and since Scikit-Learn relies on duck typing (not inher-
itance), all you need is to create a class and implement three methods: fit()
(returning self), transform(), and fit_transform(). You can get the last one for
free by simply adding TransformerMixin as a base class. Also, if you add BaseEstima
tor as a base class (and avoid *args and **kargs in your constructor) you will get
two extra methods (get_params() and set_params()) that will be useful for auto-
matic hyperparameter tuning. For example, here is a small transformer class that adds
the combined attributes we discussed earlier:

from import BaseEstimator, TransformerMixin
rooms_1ix, bedrooms_1ix, population_ix, household_ix = 3, 4, 5, 6

class CombinedAttributesAdder(BaseEstimator, TransformerMixin):

def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
self.add_bedrooms_per_room = add_bedrooms_per_room

def fit(self, X, y=None):
return self # nothing else to do

def transform(self, X, y=None):
rooms_per_household = X[:, rooms_ix] / X[:, household_1ix]
population_per_household = X[:, population_ix] / X[:, household_1ix]
if self.add_bedrooms_per_room:

bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_1ix]
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return np.c_[X, rooms_per_household, population_per_household,
bedrooms_per_room]
else:
return np.c_[X, rooms_per_household, population_per_household]

attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)

In this example the transformer has one hyperparameter, add_bedrooms_per_room,
set to True by default (it is often helpful to provide sensible defaults). This hyperpara-
meter will allow you to easily find out whether adding this attribute helps the
Machine Learning algorithms or not. More generally, you can add a hyperparameter
to gate any data preparation step that you are not 100% sure about. The more you
automate these data preparation steps, the more combinations you can automatically
try out, making it much more likely that you will find a great combination (and sav-
ing you a lot of time).

Feature Scaling

One of the most important transformations you need to apply to your data is feature
scaling. With few exceptions, Machine Learning algorithms don’t perform well when
the input numerical attributes have very different scales. This is the case for the hous-
ing data: the total number of rooms ranges from about 6 to 39,320, while the median
incomes only range from 0 to 15. Note that scaling the target values is generally not
required.

There are two common ways to get all attributes to have the same scale: min-max
scaling and standardization.

Min-max scaling (many people call this normalization) is quite simple: values are
shifted and rescaled so that they end up ranging from 0 to 1. We do this by subtract-
ing the min value and dividing by the max minus the min. Scikit-Learn provides a
transformer called MinMaxScaler for this. It has a feature_range hyperparameter
that lets you change the range if you don’t want 0-1 for some reason.

Standardization is quite different: first it subtracts the mean value (so standardized
values always have a zero mean), and then it divides by the variance so that the result-
ing distribution has unit variance. Unlike min-max scaling, standardization does not
bound values to a specific range, which may be a problem for some algorithms (e.g.,
neural networks often expect an input value ranging from 0 to 1). However, standard-
ization is much less affected by outliers. For example, suppose a district had a median
income equal to 100 (by mistake). Min-max scaling would then crush all the other
values from 0-15 down to 0-0.15, whereas standardization would not be much affec-
ted. Scikit-Learn provides a transformer called StandardScaler for standardization.
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As with all the transformations, it is important to fit the scalers to

the training data only, not to the full dataset (including the test set).

Only then can you use them to transform the training set and the
, test set (and new data).

Transformation Pipelines

As you can see, there are many data transformation steps that need to be executed in
the right order. Fortunately, Scikit-Learn provides the Pipeline class to help with
such sequences of transformations. Here is a small pipeline for the numerical
attributes:

from import Pipeline
from import StandardScaler

num_pipeline = Pipeline([
('imputer', Imputer(strategy="median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
D

housing_num_tr = num_pipeline.fit_transform(housing_num)

The Pipeline constructor takes a list of name/estimator pairs defining a sequence of
steps. All but the last estimator must be transformers (i.e., they must have a
fit_transform() method). The names can be anything you like.

When you call the pipeline’s fit() method, it calls fit_transform() sequentially on
all transformers, passing the output of each call as the parameter to the next call, until
it reaches the final estimator, for which it just calls the fit() method.

The pipeline exposes the same methods as the final estimator. In this example, the last
estimator is a StandardScaler, which is a transformer, so the pipeline has a trans
form() method that applies all the transforms to the data in sequence (it also has a
fit_transform method that we could have used instead of calling fit() and then
transform()).

You now have a pipeline for numerical values, and you also need to apply the LabelBi
narizer on the categorical values: how can you join these transformations into a sin-
gle pipeline? Scikit-Learn provides a FeatureUnion class for this. You give it a list of
transformers (which can be entire transformer pipelines), and when its transform()
method is called it runs each transformer’s transform() method in parallel, waits for
their output, and then concatenates them and returns the result (and of course calling
its fit() method calls all each transformer’s fit() method). A full pipeline handling
both numerical and categorical attributes may look like this:
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from sklearn.pipeline import FeatureUnion

num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]

num_pipeline = Pipeline([
('selector', DataFrameSelector(num_attribs)),
('imputer', Imputer(strategy="median")),
('attribs_adder', CombinedAttributesAdder()),
('std_scaler', StandardScaler()),
D

cat_pipeline = Pipeline([
('selector', DataFrameSelector(cat_attribs)),
('label_binarizer', LabelBinarizer()),

D)

full_pipeline = FeatureUnion(transformer_list=[
("num_pipeline", num_pipeline),
("cat_pipeline", cat_pipeline),

D

And you can run the whole pipeline simply:

>>> housing_prepared = full_pipeline.fit_transform(housing)
>>> housing_prepared

array([[ 0.73225807, -0.67331551, 0.58426443, ..., 0. ,
0. , o. 1,
[-0.99102923, 1.63234656, -0.92655887, ..., O. ,
0. , o. 1,
[...]

>>> housing_prepared.shape
(16513, 17)

Each subpipeline starts with a selector transformer: it simply transforms the data by
selecting the desired attributes (numerical or categorical), dropping the rest, and con-
verting the resulting DataFrame to a NumPy array. There is nothing in Scikit-Learn
to handle Pandas DataFrames,” so we need to write a simple custom transformer for
this task:

from sklearn.base import BaseEstimator, TransformerMixin

class DataFrameSelector(BaseEstimator, TransformerMixin):
def __init__(self, attribute_names):
self.attribute_names = attribute_names
def fit(self, X, y=None):
return self

20 But check out Pull Request #3886, which may introduce a ColumnTransformer class making attribute-specific
transformations easy. You could also run pip3 install sklearn-pandas to get a DataFrameMapper class with
a similar objective.
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def transform(self, X):
return X[self.attribute_names].values

Select and Train a Model

At last! You framed the problem, you got the data and explored it, you sampled a
training set and a test set, and you wrote transformation pipelines to clean up and
prepare your data for Machine Learning algorithms automatically. You are now ready
to select and train a Machine Learning model.

Training and Evaluating on the Training Set

The good news is that thanks to all these previous steps, things are now going to be
much simpler than you might think. Let’s first train a Linear Regression model, like
we did in the previous chapter:

from import LinearRegression

lin_reg = LinearRegression()
1in_reg.fit(housing_prepared, housing_labels)

Done! You now have a working Linear Regression model. Let’s try it out on a few
instances from the training set:

>>> some_data = housing.iloc[:5]

>>> some_labels = housing_labels.iloc[:5]

>>> some_data_prepared = full_pipeline.transform(some_data)

>>> print("Predictions:\t", lin_reg.predict(some_data_prepared))

Predictions: [ 303104. 44800. 308928. 294208. 368704.]
>>> print("Labels:\t\t", list(some_labels))
Labels: [359400.0, 69700.0, 302100.0, 301300.0, 351900.0]

It works, although the predictions are not exactly accurate (e.g., the second prediction
is oftf by more than 50%!). Let’s measure this regression model's RMSE on the whole
training set using Scikit-Learn’s mean_squared_error function:

>>> from import mean_squared_error

>>> housing_predictions = lin_reg.predict(housing_prepared)

>>> lin_mse = mean_squared_error(housing_labels, housing_predictions)
>>> lin_rmse = np.sqrt(lin_mse)

>>> lin_rmse

68628.413493824875

Okay, this is better than nothing but clearly not a great score: most districts’
median_housing_values range between $120,000 and $265,000, so a typical predic-
tion error of $68,628 is not very satisfying. This is an example of a model underfitting
the training data. When this happens it can mean that the features do not provide
enough information to make good predictions, or that the model is not powerful
enough. As we saw in the previous chapter, the main ways to fix underfitting are to
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select a more powerful model, to feed the training algorithm with better features, or
to reduce the constraints on the model. This model is not regularized, so this rules
out the last option. You could try to add more features (e.g., the log of the popula-
tion), but first let’s try a more complex model to see how it does.

Let’s train a DecisionTreeRegressor. This is a powerful model, capable of finding
complex nonlinear relationships in the data (Decision Trees are presented in more
detail in Chapter 6). The code should look familiar by now:

from import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)

Now that the model is trained, let’s evaluate it on the training set:

>>> housing_predictions = tree_reg.predict(housing_prepared)

>>> tree_mse = mean_squared_error(housing_labels, housing_predictions)
>>> tree_rmse = np.sqrt(tree_mse)

>>> tree_rmse

0.0

Wait, what!? No error at all? Could this model really be absolutely perfect? Of course,
it is much more likely that the model has badly overfit the data. How can you be sure?
As we saw earlier, you don’t want to touch the test set until you are ready to launch a
model you are confident about, so you need to use part of the training set for train-
ing, and part for model validation.

Better Evaluation Using Cross-Validation

One way to evaluate the Decision Tree model would be to use the train_test_split
function to split the training set into a smaller training set and a validation set, then
train your models against the smaller training set and evaluate them against the vali-
dation set. It’s a bit of work, but nothing too difficult and it would work fairly well.

A great alternative is to use Scikit-Learn’s cross-validation feature. The following code
performs K-fold cross-validation: it randomly splits the training set into 10 distinct
subsets called folds, then it trains and evaluates the Decision Tree model 10 times,
picking a different fold for evaluation every time and training on the other 9 folds.
The result is an array containing the 10 evaluation scores:

from import cross_val_score

scores = cross_val_score(tree_reg, housing_prepared, housing_labels,
scoring="neg_mean_squared_error", cv=10)

rmse_scores = np.sqrt(-scores)
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Scikit-Learn cross-validation features expect a utility function
(greater is better) rather than a cost function (lower is better), so
the scoring function is actually the opposite of the MSE (i.e., a neg-
ative value), which is why the preceding code computes -scores
before calculating the square root.

Let’s look at the results:

>>> def display_scores(scores):

. print("Scores:", scores)

. print("Mean:", scores.mean())

. print("Standard deviation:", scores.std())

>>> display_scores(tree_rmse_scores)

Scores: [ 74678.4916885 64766.2398337 69632.86942005 69166.67693232
71486.76507766 73321.65695983 71860.04741226 71086.32691692
76934.2726093 69060.93319262]

Mean: 71199.4280043

Standard deviation: 3202.70522793

Now the Decision Tree doesn't look as good as it did earlier. In fact, it seems to per-
form worse than the Linear Regression model! Notice that cross-validation allows
you to get not only an estimate of the performance of your model, but also a measure
of how precise this estimate is (i.e., its standard deviation). The Decision Tree has a
score of approximately 71,200, generally +3,200. You would not have this information
if you just used one validation set. But cross-validation comes at the cost of training
the model several times, so it is not always possible.

Let’s compute the same scores for the Linear Regression model just to be sure:

>>> lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels,

v scoring="neg_mean_squared_error", cv=10)

>>> lin_rmse_scores = np.sqrt(-lin_scores)

>>> display_scores(lin_rmse_scores)

Scores: [ 70423.5893262  65804.84913139 66620.84314068 72510.11362141
66414.74423281 71958.89083606 67624.90198297 67825.36117664
72512.36533141 68028.11688067]

Mean: 68972.377566

Standard deviation: 2493.98819069

That's right: the Decision Tree model is overfitting so badly that it performs worse
than the Linear Regression model.

Let’s try one last model now: the RandomForestRegressor. As we will see in Chap-
ter 7, Random Forests work by training many Decision Trees on random subsets of
the features, then averaging out their predictions. Building a model on top of many
other models is called Ensemble Learning, and it is often a great way to push ML algo-
rithms even further. We will skip most of the code since it is essentially the same as
for the other models:
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>>> from import RandomForestRegressor

>>> forest_reg = RandomForestRegressor()

>>> forest_reg.fit(housing_prepared, housing_labels)

>>> [...]

>>> forest_rmse

22542.396440343684

>>> display_scores(forest_rmse_scores)

Scores: [ 53789.2879722 50256.19806622 52521.55342602 53237.44937943
52428.82176158 155854.61222549 52158.02291609 50093.66125649
53240.80406125 52761.50852822]

Mean: 52634.1919593

Standard deviation: 1576.20472269

Wow, this is much better: Random Forests look very promising. However, note that
the score on the training set is still much lower than on the validation sets, meaning
that the model is still overfitting the training set. Possible solutions for overfitting are
to simplify the model, constrain it (i.e., regularize it), or get a lot more training data.
However, before you dive much deeper in Random Forests, you should try out many
other models from various categories of Machine Learning algorithms (several Sup-
port Vector Machines with different kernels, possibly a neural network, etc.), without
spending too much time tweaking the hyperparameters. The goal is to shortlist a few
(two to five) promising models.

You should save every model you experiment with, so you can
come back easily to any model you want. Make sure you save both
the hyperparameters and the trained parameters, as well as the
cross-validation scores and perhaps the actual predictions as well.
This will allow you to easily compare scores across model types,
and compare the types of errors they make. You can easily save
Scikit-Learn models by using Python’s pickle module, or using
sklearn.externals. joblib, which is more efficient at serializing
large NumPy arrays:

from import joblib
joblib.dump(my_model, "my model.pkl")

# and later...
my_model_loaded = joblib.load("my_model.pkl")

Fine-Tune Your Model

Let’s assume that you now have a shortlist of promising models. You now need to
fine-tune them. Let’s look at a few ways you can do that.
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Grid Search

One way to do that would be to fiddle with the hyperparameters manually, until you
find a great combination of hyperparameter values. This would be very tedious work,
and you may not have time to explore many combinations.

Instead you should get Scikit-Learn’s GridSearchCV to search for you. All you need to
do is tell it which hyperparameters you want it to experiment with, and what values to
try out, and it will evaluate all the possible combinations of hyperparameter values,
using cross-validation. For example, the following code searches for the best combi-
nation of hyperparameter values for the RandomForestRegressor:

from import GridSearchCv

param_grid = [
{'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
{'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},

1
forest_reg = RandomForestRegressor()

grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
scoring='neg_mean_squared_error')

grid_search.fit(housing_prepared, housing_labels)

When you have no idea what value a hyperparameter should have,
a simple approach is to try out consecutive powers of 10 (or a
smaller number if you want a more fine-grained search, as shown
in this example with the n_estimators hyperparameter).

This param_grid tells Scikit-Learn to first evaluate all 3 x 4 = 12 combinations of
n_estimators and max_features hyperparameter values specified in the first dict
(don’t worry about what these hyperparameters mean for now; they will be explained
in Chapter 7), then try all 2 x 3 = 6 combinations of hyperparameter values in the
second dict, but this time with the bootstrap hyperparameter set to False instead of
True (which is the default value for this hyperparameter).

All in all, the grid search will explore 12 + 6 = 18 combinations of RandomForestRe
gressor hyperparameter values, and it will train each model five times (since we are
using five-fold cross validation). In other words, all in all, there will be 18 x 5 = 90
rounds of training! It may take quite a long time, but when it is done you can get the
best combination of parameters like this:

>>> grid_search.best_params_
{'max_features': 6, 'n_estimators': 30}
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Since 30 is the maximum value of n_estimators that was evalu-
ated, you should probably evaluate higher values as well, since the
score may continue to improve.

You can also get the best estimator directly:

>>> grid_search.best_estimator_

RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
max_features=6, max_leaf_nodes=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=30, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)

If GridSearchCV is initialized with refit=True (which is the
default), then once it finds the best estimator using cross-
validation, it retrains it on the whole training set. This is usually a
good idea since feeding it more data will likely improve its perfor-
mance.

And of course the evaluation scores are also available:

>>> cvres = grid_search.cv_results_
... for mean_score, params in zip(cvres['"mean_test_score"], cvres["params"]):

. print(np.sqrt(-mean_score), params)
64912.0351358 {'max_features': 2, 'n_estimators': 3}
55535.2786524 {'max_features': 2, 'n_estimators': 10}
52940.2696165 {'max_features': 2, 'n_estimators': 30}
60384.0908354 {'max_features': 4, 'n_estimators': 3}
52709.9199934 {'max_features': 4, 'n_estimators': 10}
50503.5985321 {'max_features': 4, 'n_estimators': 30}
59058.1153485 {'max_features': 6, 'n_estimators': 3}
52172.0292957 {'max_features': 6, 'n_estimators': 10}
49958.9555932 {'max_features': 6, 'n_estimators': 30}
59122.260006 {'max_features': 8, 'n_estimators': 3}

52441.5896087 {'max_features': 8, 'n_estimators': 10}

50041.4899416 {'max_features': 8, 'n_estimators': 30}

62371.1221202 {'bootstrap': False, 'max_features': 2, 'n_estimators': 3}
54572.2557534 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}
59634.0533132 {'bootstrap': False, 'max_features': 3, 'n_estimators': 3}
52456.0883904 {'bootstrap': False, 'max_features': 3, 'n_estimators': 10}
58825.665239 {'bootstrap': False, 'max_features': 4, 'n_estimators': 3}
52012.9945396 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}

In this example, we obtain the best solution by setting the max_features hyperpara-
meter to 6, and the n_estimators hyperparameter to 30. The RMSE score for this
combination is 49,959, which is slightly better than the score you got earlier using the
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default hyperparameter values (which was 52,634). Congratulations, you have suc-
cessfully fine-tuned your best model!

Don’t forget that you can treat some of the data preparation steps as
hyperparameters. For example, the grid search will automatically
find out whether or not to add a feature you were not sure about
(e.g., using the add_bedrooms_per_room hyperparameter of your
CombinedAttributesAdder transformer). It may similarly be used
to automatically find the best way to handle outliers, missing fea-
tures, feature selection, and more.

Randomized Search

The grid search approach is fine when you are exploring relatively few combinations,
like in the previous example, but when the hyperparameter search space is large, it is
often preferable to use RandomizedSearchCV instead. This class can be used in much
the same way as the GridSearchCV class, but instead of trying out all possible combi-
nations, it evaluates a given number of random combinations by selecting a random
value for each hyperparameter at every iteration. This approach has two main bene-
fits:

o If you let the randomized search run for, say, 1,000 iterations, this approach will
explore 1,000 different values for each hyperparameter (instead of just a few val-
ues per hyperparameter with the grid search approach).

« You have more control over the computing budget you want to allocate to hyper-
parameter search, simply by setting the number of iterations.

Ensemble Methods

Another way to fine-tune your system is to try to combine the models that perform
best. The group (or “ensemble”) will often perform better than the best individual
model (just like Random Forests perform better than the individual Decision Trees
they rely on), especially if the individual models make very different types of errors.
We will cover this topic in more detail in Chapter 7.

Analyze the Best Models and Their Errors

You will often gain good insights on the problem by inspecting the best models. For
example, the RandomForestRegressor can indicate the relative importance of each
attribute for making accurate predictions:

>>> feature_importances = grid_search.best_estimator_.feature_importances_
>>> feature_importances
array([ 7.14156423e-02, 6.76139189%e-02, 4.44260894e-02,
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1.66308583e-02, 1.66076861e-02, 1.82402545e-02,
1.63458761e-02,  3.26497987e-01, 6.04365775e-02,
1.13055290e-01,  7.79324766e-02, 1.12166442e-02,
1.53344918e-01,  8.41308969e-05, 2.68483884e-03,
3.46681181e-03])

Let’s display these importance scores next to their corresponding attribute names:

>>> extra_attribs = ["rooms_per_hhold", "pop_per_hhold", "bedrooms_per_room"]
>>> cat_one_hot_attribs = list(encoder.classes_)
>>> attributes = num_attribs + extra_attribs + cat_one_hot_attribs
>>> sorted(zip(feature_importances, attributes), reverse=True)
[(0.32649798665134971, 'median_income'),

(0.15334491760305854, 'INLAND'),

(0.11305529021187399, 'pop_per_hhold'),

(0.07793247662544775, 'bedrooms_per_room'),

(0.071415642259275158, 'longitude'),

(0.067613918945568688, 'latitude'),

(0.060436577499703222, 'rooms_per_hhold'),

(0.04442608939578685, 'housing_median_age'),

(0.018240254462909437, 'population'),

(0.01663085833886218, 'total_rooms'),

(0.016607686091288865, 'total_bedrooms'),

(0.016345876147580776, 'households'),

(0.011216644219017424, '<1H OCEAN'),

(0.0034668118081117387, 'NEAR OCEAN'),

(0.0026848388432755429, 'NEAR BAY'),

(8.4130896890070617e-05, 'ISLAND')]

With this information, you may want to try dropping some of the less useful features

(e.g., apparently only one ocean_proximity category is really useful, so you could try
dropping the others).

You should also look at the specific errors that your system makes, then try to under-
stand why it makes them and what could fix the problem (adding extra features or, on
the contrary, getting rid of uninformative ones, cleaning up outliers, etc.).

Evaluate Your System on the Test Set

After tweaking your models for a while, you eventually have a system that performs
sufficiently well. Now is the time to evaluate the final model on the test set. There is
nothing special about this process; just get the predictors and the labels from your
test set, run your full_pipeline to transform the data (call transform(), not
fit_transform()!), and evaluate the final model on the test set:

final_model = grid_search.best_estimator_

X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()

X_test_prepared = full_pipeline.transform(X_test)
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final_predictions = final_model.predict(X_test_prepared)

final_mse = mean_squared_error(y_test, final_predictions)
final_rmse = np.sqrt(final_mse) # => evaluates to 48,209.6

The performance will usually be slightly worse than what you measured using cross-
validation if you did a lot of hyperparameter tuning (because your system ends up
fine-tuned to perform well on the validation data, and will likely not perform as well
on unknown datasets). It is not the case in this example, but when this happens you
must resist the temptation to tweak the hyperparameters to make the numbers look
good on the test set; the improvements would be unlikely to generalize to new data.

Now comes the project prelaunch phase: you need to present your solution (high-
lighting what you have learned, what worked and what did not, what assumptions
were made, and what your system’s limitations are), document everything, and create
nice presentations with clear visualizations and easy-to-remember statements (e.g.,
“the median income is the number one predictor of housing prices”).

Launch, Monitor, and Maintain Your System

Perfect, you got approval to launch! You need to get your solution ready for produc-
tion, in particular by plugging the production input data sources into your system
and writing tests.

You also need to write monitoring code to check your system’s live performance at
regular intervals and trigger alerts when it drops. This is important to catch not only
sudden breakage, but also performance degradation. This is quite common because
models tend to “rot” as data evolves over time, unless the models are regularly trained
on fresh data.

Evaluating your system’s performance will require sampling the system’s predictions
and evaluating them. This will generally require a human analysis. These analysts
may be field experts, or workers on a crowdsourcing platform (such as Amazon
Mechanical Turk or CrowdFlower). Either way, you need to plug the human evalua-
tion pipeline into your system.

You should also make sure you evaluate the system’s input data quality. Sometimes
performance will degrade slightly because of a poor quality signal (e.g., a malfunc-
tioning sensor sending random values, or another team’s output becoming stale), but
it may take a while before your system’s performance degrades enough to trigger an
alert. If you monitor your system’s inputs, you may catch this earlier. Monitoring the
inputs is particularly important for online learning systems.

Finally, you will generally want to train your models on a regular basis using fresh
data. You should automate this process as much as possible. If you don’t, you are very
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likely to refresh your model only every six months (at best), and your system’s perfor-
mance may fluctuate severely over time. If your system is an online learning system,
you should make sure you save snapshots of its state at regular intervals so you can
easily roll back to a previously working state.

Try It Out!

Hopefully this chapter gave you a good idea of what a Machine Learning project
looks like, and showed you some of the tools you can use to train a great system. As
you can see, much of the work is in the data preparation step, building monitoring
tools, setting up human evaluation pipelines, and automating regular model training.
The Machine Learning algorithms are also important, of course, but it is probably
preferable to be comfortable with the overall process and know three or four algo-
rithms well rather than to spend all your time exploring advanced algorithms and not
enough time on the overall process.

So, if you have not already done so, now is a good time to pick up a laptop, select a
dataset that you are interested in, and try to go through the whole process from A to
Z. A good place to start is on a competition website such as http://kaggle.com/: you
will have a dataset to play with, a clear goal, and people to share the experience with.

Exercises

Using this chapter’s housing dataset:

1. Try a Support Vector Machine regressor (sklearn.svm.SVR), with various hyper-
parameters such as kernel="linear" (with various values for the C hyperpara-
meter) or kernel="rbf" (with various values for the C and gamma
hyperparameters). Don’t worry about what these hyperparameters mean for now.
How does the best SVR predictor perform?

2. Try replacing GridSearchCV with RandomizedSearchcCv.

3. Try adding a transformer in the preparation pipeline to select only the most
important attributes.

4. Try creating a single pipeline that does the full data preparation plus the final
prediction.

5. Automatically explore some preparation options using GridSearchcCv.

Solutions to these exercises are available in the online Jupyter notebooks at https://
github.com/ageron/handson-ml.
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CHAPTER 3
Classification

In Chapter 1 we mentioned that the most common supervised learning tasks are
regression (predicting values) and classification (predicting classes). In Chapter 2 we
explored a regression task, predicting housing values, using various algorithms such
as Linear Regression, Decision Trees, and Random Forests (which will be explained
in further detail in later chapters). Now we will turn our attention to classification
systems.

MNIST

In this chapter, we will be using the MNIST dataset, which is a set of 70,000 small
images of digits handwritten by high school students and employees of the US Cen-
sus Bureau. Each image is labeled with the digit it represents. This set has been stud-
ied so much that it is often called the “Hello World” of Machine Learning: whenever
people come up with a new classification algorithm, they are curious to see how it
will perform on MNIST. Whenever someone learns Machine Learning, sooner or
later they tackle MNIST.

Scikit-Learn provides many helper functions to download popular datasets. MNIST is
one of them. The following code fetches the MNIST dataset:'

>>> from import fetch_mldata
>>> mnist = fetch_mldata('MNIST original')
>>> mnist

{'COL_NAMES': ['label', 'data'],
'DESCR': 'mldata.org dataset: mnist-original’,
'data': array([[0, 0, 0, ..., 0, 0, O],
[6, 0, 0, ..., 0, 0, 0],

1 By default Scikit-Learn caches downloaded datasets in a directory called $HOME/scikit_learn_data.
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[0: 0: 0’ L] 01 0: 0]1
[OJ 0’ 0’ ey 01 01 0]1
[6, 0, 0, ..., 0, 0, 0],
[6, 0, 06, ..., 0, 0, 0]], dtype=uint8),
'target': array([ 0., 0., 0., ..., 9., 9., 9.1}
Datasets loaded by Scikit-Learn generally have a similar dictionary structure includ-
ing:

A DESCR key describing the dataset

A data key containing an array with one row per instance and one column per
feature

o A target key containing an array with the labels

Let’s look at these arrays:

>>> X, y = mnist["data"], mnist["target"]
>>> X.shape

(70000, 784)

>>> y.shape

(70000,)

There are 70,000 images, and each image has 784 features. This is because each image
is 28x28 pixels, and each feature simply represents one pixels intensity, from 0
(white) to 255 (black). Let’s take a peek at one digit from the dataset. All you need to
do is grab an instance’s feature vector, reshape it to a 28x28 array, and display it using
Matplotlib’s imshow() function:

%matplotlib inline
import
import as

some_digit = X[36000]
some_digit_1image = some_digit.reshape(28, 28)

plt.imshow(some_digit_image, cmap = matplotlib.cm.binary,
interpolation="nearest")

plt.axis("off")

plt.show()

This looks like a 5, and indeed that’s what the label tells us:
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>>> y[36000]
5.0

Figure 3-1 shows a few more images from the MNIST dataset to give you a feel for
the complexity of the classification task.

Figure 3-1. A few digits from the MNIST dataset

But wait! You should always create a test set and set it aside before inspecting the data
closely. The MNIST dataset is actually already split into a training set (the first 60,000
images) and a test set (the last 10,000 images):

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

Let’s also shuffle the training set; this will guarantee that all cross-validation folds will
be similar (you don’t want one fold to be missing some digits). Moreover, some learn-
ing algorithms are sensitive to the order of the training instances, and they perform
poorly if they get many similar instances in a row. Shuffling the dataset ensures that
this won’t happen:?

2 Shuffling may be a bad idea in some contexts—for example, if you are working on time series data (such as
stock market prices or weather conditions). We will explore this in the next chapters.
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import as

shuffle_index = np.random.permutation(60000)
X_train, y_train = X_train[shuffle_index], y_train[shuffle_index]

Training a Binary Classifier

Let’s simplify the problem for now and only try to identify one digit—for example,
the number 5. This “5-detector” will be an example of a binary classifier, capable of
distinguishing between just two classes, 5 and not-5. Let’s create the target vectors for
this classification task:

y_train_5 = (y_train == 5) # True for all 5s, False for all other digits.

y_test_5 = (y_test == 5)
Okay, now let’s pick a classifier and train it. A good place to start is with a Stochastic
Gradient Descent (SGD) classifier, using Scikit-Learn’s SGDClassifier class. This clas-
sifier has the advantage of being capable of handling very large datasets efficiently.
This is in part because SGD deals with training instances independently, one at a time
(which also makes SGD well suited for online learning), as we will see later. Let’s create
an SGDClassifier and train it on the whole training set:

from import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)

The SGDClassifier relies on randomness during training (hence
the name “stochastic”). If you want reproducible results, you
should set the random_state parameter.

Now you can use it to detect images of the number 5:

>>> sgd_clf.predict([some_digit])

array([ True], dtype=bool)
The classifier guesses that this image represents a 5 (True). Looks like it guessed right
in this particular case! Now, let’s evaluate this model’s performance.

Performance Measures

Evaluating a classifier is often significantly trickier than evaluating a regressor, so we
will spend a large part of this chapter on this topic. There are many performance
measures available, so grab another coffee and get ready to learn many new concepts
and acronyms!
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Measuring Accuracy Using Cross-Validation

A good way to evaluate a model is to use cross-validation, just as you did in Chap-
ter 2.

Implementing Cross-Validation

Occasionally you will need more control over the cross-validation process than what
cross_val_score() and similar functions provide. In these cases, you can implement
cross-validation yourself; it is actually fairly straightforward. The following code does
roughly the same thing as the preceding cross_val_score() code, and prints the
same result:

from import StratifiedKFold
from import clone

skfolds = StratifiedKFold(n_splits=3, random_state=42)

for train_index, test_index in skfolds.split(X_train, y_train_5):
clone_clf = clone(sgd_clf)
X_train_folds = X_train[train_index]
y_train_folds = (y_train_5[train_index])
X_test_fold = X_train[test_index]
y_test_fold = (y_train_5[test_index])

clone_clf.fit(X_train_folds, y_train_folds)

y_pred = clone_clf.predict(X_test_fold)

n_correct = sum(y_pred == y_test_fold)

print(n_correct / len(y_pred)) # prints 0.9502, 0.96565 and 0.96495

The StratifiedKFold class performs stratified sampling (as explained in Chapter 2)
to produce folds that contain a representative ratio of each class. At each iteration the
code creates a clone of the classifier, trains that clone on the training folds, and makes
predictions on the test fold. Then it counts the number of correct predictions and
outputs the ratio of correct predictions.

Let’s use the cross_val_score() function to evaluate your SGDClassifier model
using K-fold cross-validation, with three folds. Remember that K-fold cross-
validation means splitting the training set into K-folds (in this case, three), then mak-
ing predictions and evaluating them on each fold using a model trained on the
remaining folds (see Chapter 2):

>>> from import cross_val_score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([ 0.9502 , 0.96565, 0.96495])
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Wow! Above 95% accuracy (ratio of correct predictions) on all cross-validation folds?
This looks amazing, doesn’t it? Well, before you get too excited, let’s look at a very
dumb classifier that just classifies every single image in the “not-5” class:

from import BaseEstimator

class Never5Classifier(BaseEstimator):
def fit(self, X, y=None):
pass
def predict(self, X):
return np.zeros((len(X), 1), dtype=bool)

Can you guess this model’s accuracy? Let’s find out:

>>> never_5_clf = Never5Classifier()

>>> cross_val_score(never_5_clf, X_train, y_train_5, cv=3, scoring="accuracy")

array([ 0.969 , 0.90715, 0.9128 ])
That’s right, it has over 90% accuracy! This is simply because only about 10% of the
images are 5s, so if you always guess that an image is not a 5, you will be right about
90% of the time. Beats Nostradamus.

This demonstrates why accuracy is generally not the preferred performance measure
for classifiers, especially when you are dealing with skewed datasets (i.e., when some
classes are much more frequent than others).

Confusion Matrix

A much better way to evaluate the performance of a classifier is to look at the confu-
sion matrix. The general idea is to count the number of times instances of class A are
classified as class B. For example, to know the number of times the classifier confused
images of 5s with 3s, you would look in the 5" row and 3™ column of the confusion
matrix.

To compute the confusion matrix, you first need to have a set of predictions, so they
can be compared to the actual targets. You could make predictions on the test set, but
let’s keep it untouched for now (remember that you want to use the test set only at the
very end of your project, once you have a classifier that you are ready to launch).
Instead, you can use the cross_val_predict() function:

from sklearn.model_selection import cross_val_predict

y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)

Just like the cross_val_score() function, cross_val_predict() performs K-fold
cross-validation, but instead of returning the evaluation scores, it returns the predic-
tions made on each test fold. This means that you get a clean prediction for each
instance in the training set (“clean” meaning that the prediction is made by a model
that never saw the data during training).
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Now you are ready to get the confusion matrix using the confusion_matrix() func-
tion. Just pass it the target classes (y_train_5) and the predicted classes
(y_train_pred):

>>> from import confusion_matrix
>>> confusion_matrix(y_train_5, y_train_pred)
array([[53272, 1307],

[ 1077, 4344]1)

Each row in a confusion matrix represents an actual class, while each column repre-
sents a predicted class. The first row of this matrix considers non-5 images (the nega-
tive class): 53,272 of them were correctly classified as non-5s (they are called true
negatives), while the remaining 1,307 were wrongly classified as 5s (false positives).
The second row considers the images of 5s (the positive class): 1,077 were wrongly
classified as non-5s (false negatives), while the remaining 4,344 were correctly classi-
fied as 5s (true positives). A perfect classifier would have only true positives and true
negatives, so its confusion matrix would have nonzero values only on its main diago-
nal (top left to bottom right):

>>> confusion_matrix(y_train_5, y_train_perfect_predictions)
array([[54579, 0],
[ 0, 54211])

The confusion matrix gives you a lot of information, but sometimes you may prefer a

more concise metric. An interesting one to look at is the accuracy of the positive pre-
dictions; this is called the precision of the classifier (Equation 3-1).

Equation 3-1. Precision

recision = L
P ~ TP+ FP

TP is the number of true positives, and FP is the number of false positives.

A trivial way to have perfect precision is to make one single positive prediction and
ensure it is correct (precision = 1/1 = 100%). This would not be very useful since the
classifier would ignore all but one positive instance. So precision is typically used
along with another metric named recall, also called sensitivity or true positive rate
(TPR): this is the ratio of positive instances that are correctly detected by the classifier
(Equation 3-2).

Equation 3-2. Recall

TP

recall = m

EN is of course the number of false negatives.
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If you are confused about the confusion matrix, Figure 3-2 may help.

Figure 3-2. An illustrated confusion matrix

Precision and Recall

Scikit-Learn provides several functions to compute classifier metrics, including preci-
sion and recall:

>>> from import precision_score, recall_score

>>> precision_score(y_train_5, y_pred) == 4344 / (4344 + 1307)
0.76871350203503808

>>> recall_score(y_train_5, y_train_pred) # == 4344 / (4344 + 1077)
0.79136690647482011

Now your 5-detector does not look as shiny as it did when you looked at its accuracy.
When it claims an image represents a 5, it is correct only 77% of the time. Moreover,
it only detects 79% of the 5s.

It is often convenient to combine precision and recall into a single metric called the F,
score, in particular if you need a simple way to compare two classifiers. The F, score is
the harmonic mean of precision and recall (Equation 3-3). Whereas the regular mean
treats all values equally, the harmonic mean gives much more weight to low values.

As a result, the classifier will only get a high F, score if both recall and precision are
high.

Equation 3-3. F, score

F o 2 _ 5 Precisionx recall TP
1= 1 1 precision + recall FN + FP
precision  recall 2
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To compute the F, score, simply call the f1_score() function:

>>> from import f1_score
>>> f1_score(y_train_5, y_pred)
0.78468208092485547

The F, score favors classifiers that have similar precision and recall. This is not always
what you want: in some contexts you mostly care about precision, and in other con-
texts you really care about recall. For example, if you trained a classifier to detect vid-
eos that are safe for kids, you would probably prefer a classifier that rejects many
good videos (low recall) but keeps only safe ones (high precision), rather than a clas-
sifier that has a much higher recall but lets a few really bad videos show up in your
product (in such cases, you may even want to add a human pipeline to check the clas-
sifier’s video selection). On the other hand, suppose you train a classifier to detect
shoplifters on surveillance images: it is probably fine if your classifier has only 30%
precision as long as it has 99% recall (sure, the security guards will get a few false
alerts, but almost all shoplifters will get caught).

Unfortunately, you can’t have it both ways: increasing precision reduces recall, and
vice versa. This is called the precision/recall tradeoff.

Precision/Recall Tradeoff

To understand this tradeof, let’s look at how the SGDClassifier makes its classifica-
tion decisions. For each instance, it computes a score based on a decision function,
and if that score is greater than a threshold, it assigns the instance to the positive
class, or else it assigns it to the negative class. Figure 3-3 shows a few digits positioned
from the lowest score on the left to the highest score on the right. Suppose the deci-
sion threshold is positioned at the central arrow (between the two 5s): you will find 4
true positives (actual 5s) on the right of that threshold, and one false positive (actually
a 6). Therefore, with that threshold, the precision is 80% (4 out of 5). But out of 6
actual 5s, the classifier only detects 4, so the recall is 67% (4 out of 6). Now if you
raise the threshold (move it to the arrow on the right), the false positive (the 6)
becomes a true negative, thereby increasing precision (up to 100% in this case), but
one true positive becomes a false negative, decreasing recall down to 50%. Conversely,
lowering the threshold increases recall and reduces precision.
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Figure 3-3. Decision threshold and precision/recall tradeoff

Scikit-Learn does not let you set the threshold directly, but it does give you access to
the decision scores that it uses to make predictions. Instead of calling the classifier’s
predict() method, you can call its decision_function() method, which returns a
score for each instance, and then make predictions based on those scores using any
threshold you want:

>>> y scores = sgd_clf.decision_function([some_digit])
>>> y_scores

array([ 161855.74572176])

>>> threshold = 0

>>> y_some_digit_pred = (y_scores > threshold)

array([ True], dtype=bool)

The SGDClassifier uses a threshold equal to 0, so the previous code returns the same
result as the predict() method (i.e., True). Let’s raise the threshold:

>>> threshold = 200000

>>> y_some_digit_pred = (y_scores > threshold)

>>> y_some_digit_pred

array([False], dtype=bool)
This confirms that raising the threshold decreases recall. The image actually repre-
sents a 5, and the classifier detects it when the threshold is 0, but it misses it when the
threshold is increased to 200,000.

So how can you decide which threshold to use? For this you will first need to get the
scores of all instances in the training set using the cross_val_predict() function
again, but this time specifying that you want it to return decision scores instead of
predictions:
y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3,
method="decision_function")

Now with these scores you can compute precision and recall for all possible thresh-
olds using the precision_recall_curve() function:
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from import precision_recall_curve

precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)

Finally, you can plot precision and recall as functions of the threshold value using
Matplotlib (Figure 3-4):

def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
plt.xlabel("Threshold")
plt.legend(loc="upper left")
plt.ylim([0, 1])

plot_precision_recall_vs_threshold(precisions, recalls, thresholds)
plt.show()

Figure 3-4. Precision and recall versus the decision threshold

You may wonder why the precision curve is bumpier than the recall
curve in Figure 3-4. The reason is that precision may sometimes go
down when you raise the threshold (although in general it will go
up). To understand why, look back at Figure 3-3 and notice what
happens when you start from the central threshold and move it just
one digit to the right: precision goes from 4/5 (80%) down to 3/4
(75%). On the other hand, recall can only go down when the thres-
hold is increased, which explains why its curve looks smooth.

Now you can simply select the threshold value that gives you the best precision/recall
tradeoff for your task. Another way to select a good precision/recall tradeoff is to plot
precision directly against recall, as shown in Figure 3-5.
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Figure 3-5. Precision versus recall

You can see that precision really starts to fall sharply around 80% recall. You will
probably want to select a precision/recall tradeoff just before that drop—for example,
at around 60% recall. But of course the choice depends on your project.

So let’s suppose you decide to aim for 90% precision. You look up the first plot
(zooming in a bit) and find that you need to use a threshold of about 70,000. To make
predictions (on the training set for now), instead of calling the classifier’s predict()
method, you can just run this code:

y_train_pred_90 = (y_scores > 70000)
Let’s check these predictions’ precision and recall:

>>> precision_score(y_train_5, y_train_pred_90)
0.8998702983138781

>>> recall_score(y_train_5, y_train_pred_90)
0.63991883416343853

Great, you have a 90% precision classifier (or close enough)! As you can see, it is
fairly easy to create a classifier with virtually any precision you want: just set a high
enough threshold, and youre done. Hmm, not so fast. A high-precision classifier is
not very useful if its recall is too low!

If someone says “let’s reach 99% precision,” you should ask, “at
what recall?”
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The ROC Curve

The receiver operating characteristic (ROC) curve is another common tool used with
binary classifiers. It is very similar to the precision/recall curve, but instead of plot-
ting precision versus recall, the ROC curve plots the true positive rate (another name
for recall) against the false positive rate. The FPR is the ratio of negative instances that
are incorrectly classified as positive. It is equal to one minus the true negative rate,
which is the ratio of negative instances that are correctly classified as negative. The
TNR is also called specificity. Hence the ROC curve plots sensitivity (recall) versus

1 - specificity.
To plot the ROC curve, you first need to compute the TPR and FPR for various thres-
hold values, using the roc_curve() function:

from import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)

Then you can plot the FPR against the TPR using Matplotlib. This code produces the
plot in Figure 3-6:

def plot_roc_curve(fpr, tpr, label=None):
plt.plot(fpr, tpr, linewidth=2, label=label)
plt.plot([0, 1], [0, 1], 'k--")
plt.axis([0, 1, 0, 1])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')

plot_roc_curve(fpr, tpr)
plt.show()

Figure 3-6. ROC curve
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Once again there is a tradeoff: the higher the recall (TPR), the more false positives
(FPR) the classifier produces. The dotted line represents the ROC curve of a purely
random classifier; a good classifier stays as far away from that line as possible (toward
the top-left corner).

One way to compare classifiers is to measure the area under the curve (AUC). A per-
fect classifier will have a ROC AUC equal to 1, whereas a purely random classifier will
have a ROC AUC equal to 0.5. Scikit-Learn provides a function to compute the ROC
AUC:

>>> from import roc_auc_score
>>> roc_auc_score(y_train_5, y_scores)
0.97061072797174941

Since the ROC curve is so similar to the precision/recall (or PR)
curve, you may wonder how to decide which one to use. As a rule
of thumb, you should prefer the PR curve whenever the positive
class is rare or when you care more about the false positives than
the false negatives, and the ROC curve otherwise. For example,
looking at the previous ROC curve (and the ROC AUC score), you
may think that the classifier is really good. But this is mostly
because there are few positives (5s) compared to the negatives
(non-5s). In contrast, the PR curve makes it clear that the classifier
has room for improvement (the curve could be closer to the top-
right corner).

Lets train a RandomForestClassifier and compare its ROC curve and ROC AUC
score to the SGDClassifier. First, you need to get scores for each instance in the
training set. But due to the way it works (see Chapter 7), the RandomForestClassti
fier class does not have a decision_function() method. Instead it has a pre
dict_proba() method. Scikit-Learn classifiers generally have one or the other. The
predict_proba() method returns an array containing a row per instance and a col-
umn per class, each containing the probability that the given instance belongs to the
given class (e.g., 70% chance that the image represents a 5):

from import RandomForestClassifier

forest_clf = RandomForestClassifier(random_state=42)
y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3,
method="predict_proba")

But to plot a ROC curve, you need scores, not probabilities. A simple solution is to
use the positive class’s probability as the score:

y_scores_forest = y_probas_forest[:, 1] # score = proba of positive class
fpr_forest, tpr_forest, thresholds_forest = roc_curve(y_train_5,y_scores_forest)
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Now you are ready to plot the ROC curve. It is useful to plot the first ROC curve as
well to see how they compare (Figure 3-7):

plt.plot(fpr, tpr, "b:", label="SGD")
plot_roc_curve(fpr_forest, tpr_forest, "Random Forest")
plt.legend(loc="bottom right")

plt.show()

Figure 3-7. Comparing ROC curves

As you can see in Figure 3-7, the RandomForestClassifier’s ROC curve looks much
better than the SGDClassifier’s: it comes much closer to the top-left corner. As a
result, its ROC AUC score is also significantly better:

>>> roc_auc_score(y_train_5, y_scores_forest)
0.99312433660038291

Try measuring the precision and recall scores: you should find 98.5% precision and
82.8% recall. Not too bad!

Hopefully you now know how to train binary classifiers, choose the appropriate met-
ric for your task, evaluate your classifiers using cross-validation, select the precision/
recall tradeoff that fits your needs, and compare various models using ROC curves
and ROC AUC scores. Now let’s try to detect more than just the 5s.

Multiclass Classification

Whereas binary classifiers distinguish between two classes, multiclass classifiers (also
called multinomial classifiers) can distinguish between more than two classes.
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Some algorithms (such as Random Forest classifiers or naive Bayes classifiers) are
capable of handling multiple classes directly. Others (such as Support Vector Machine
classifiers or Linear classifiers) are strictly binary classifiers. However, there are vari-
ous strategies that you can use to perform multiclass classification using multiple
binary classifiers.

For example, one way to create a system that can classify the digit images into 10
classes (from 0 to 9) is to train 10 binary classifiers, one for each digit (a 0-detector, a
1-detector, a 2-detector, and so on). Then when you want to classify an image, you get
the decision score from each classifier for that image and you select the class whose
classifier outputs the highest score. This is called the one-versus-all (OvA) strategy
(also called one-versus-the-rest).

Another strategy is to train a binary classifier for every pair of digits: one to distin-
guish Os and 1s, another to distinguish Os and 2s, another for 1s and 2s, and so on.
This is called the one-versus-one (OvO) strategy. If there are N classes, you need to
train N x (N - 1) / 2 classifiers. For the MNIST problem, this means training 45
binary classifiers! When you want to classify an image, you have to run the image
through all 45 classifiers and see which class wins the most duels. The main advan-
tage of OvO is that each classifier only needs to be trained on the part of the training
set for the two classes that it must distinguish.

Some algorithms (such as Support Vector Machine classifiers) scale poorly with the
size of the training set, so for these algorithms OvO is preferred since it is faster to
train many classifiers on small training sets than training few classifiers on large
training sets. For most binary classification algorithms, however, OvA is preferred.

Scikit-Learn detects when you try to use a binary classification algorithm for a multi-
class classification task, and it automatically runs OvA (except for SVM classifiers for
which it uses OvO). Let’s try this with the SGDClassifier:

>>> sgd_clf.fit(X_train, y_train) # y train, not y train_5

>>> sgd_clf.predict([some_digit])

array([ 5.1)
That was easy! This code trains the SGDClassifier on the training set using the origi-
nal target classes from 0 to 9 (y_train), instead of the 5-versus-all target classes
(y_train_5). Then it makes a prediction (a correct one in this case). Under the hood,
Scikit-Learn actually trained 10 binary classifiers, got their decision scores for the
image, and selected the class with the highest score.

To see that this is indeed the case, you can call the decision_function() method.
Instead of returning just one score per instance, it now returns 10 scores, one per
class:

>>> some_digit_scores = sgd_clf.decision_function([some_digit])
>>> some_digit_scores
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array([[-311402.62954431, -363517.28355739, -446449.5306454 ,
-183226.61023518, -414337.15339485, 161855.74572176,
-452576.39616343, -471957.14962573, -518542.33997148,
-536774.63961222]11)

The highest score is indeed the one corresponding to class 5:

>>> np.argmax(some_digit_scores)

5

>>> sgd_clf.classes_

array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
>>> sgd_clf.classes[5]

5.0

When a classifier is trained, it stores the list of target classes in its
classes_ attribute, ordered by value. In this case, the index of each
class in the classes_ array conveniently matches the class itself
(e.g., the class at index 5 happens to be class 5), but in general you
won't be so lucky.

If you want to force ScikitLearn to use one-versus-one or one-versus-all, you can use
the OneVsOneClassifier or OneVsRestClassifier classes. Simply create an instance
and pass a binary classifier to its constructor. For example, this code creates a multi-
class classifier using the OvO strategy, based on a SGDClassifier:

>>> from import OneVsOneClassifier

>>> ovo_clf = OneVsOneClassifier(SGDClassifier(random_state=42))
>>> ovo_clf.fit(X_train, y_train)

>>> ovo_clf.predict([some_digit])

array([ 5.])
>>> len(ovo_clf.estimators_)
45

Training a RandomForestClassifier is just as easy:

>>> forest_clf.fit(X_train, y_train)
>>> forest_clf.predict([some_digit])
array([ 5.1)

This time Scikit-Learn did not have to run OvA or OvO because Random Forest
classifiers can directly classify instances into multiple classes. You can call

predict_proba() to get the list of probabilities that the classifier assigned to each
instance for each class:

>>> forest_clf.predict_proba([some_digit])
array([[ 0.1, ©., 0., 0.1, 0., 0.8, 0., 0., 0., 0.1D

You can see that the classifier is fairly confident about its prediction: the 0.8 at the 5%
index in the array means that the model estimates an 80% probability that the image
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represents a 5. It also thinks that the image could instead be a 0 or a 3 (10% chance
each).

Now of course you want to evaluate these classifiers. As usual, you want to use cross-
validation. Let’s evaluate the SGDClassifier’s accuracy using the cross_val_score()
function:

>>> cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy")
array([ 0.84063187, 0.84899245, 0.86652998])

It gets over 84% on all test folds. If you used a random classifier, you would get 10%
accuracy, so this is not such a bad score, but you can still do much better. For exam-
ple, simply scaling the inputs (as discussed in Chapter 2) increases accuracy above
90%:

>>> from import StandardScaler

>>> scaler = StandardScaler()

>>> X_train_scaled = scaler.fit_transform(X_train.astype(np.float64))

>>> cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy")
array([ 0.91011798, 0.90874544, 0.906636 1)

Error Analysis

Of course, if this were a real project, you would follow the steps in your Machine
Learning project checklist (see Appendix B): exploring data preparation options, try-
ing out multiple models, shortlisting the best ones and fine-tuning their hyperpara-
meters using GridSearchCV, and automating as much as possible, as you did in the
previous chapter. Here, we will assume that you have found a promising model and
you want to find ways to improve it. One way to do this is to analyze the types of
errors it makes.

First, you can look at the confusion matrix. You need to make predictions using the
cross_val_predict() function, then call the confusion_matrix() function, just like
you did earlier:

>>> y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)
>>> conf_mx = confusion_matrix(y_train, y_train_pred)
>>> conf_mx
array([[5725, 3, 24, 9, 10, 49, 50, 10, 39, 4],
[ 2, 6493, 43, 25, 7, 40, 5, 10, 109, 8],
51, 41, 5321, 104, 89, 26, 87, 60, 166, 13],
47, 46, 141, 5342, 1, 231, 40, 50, 141, 92],
19, 29, 41, 10, 5366, 9, 56, 37, 86, 189],
73, 45, 36, 193, 64, 4582, 111, 30, 193, 94],
29, 34, 44, 2, 42, 85, 5627, 10, 45, 0],
25, 24, 74, 32, 54, 12, 6, 5787, 15, 236],
52, 161, 73, 156, 10, 163, 61, 25, 5027, 123],
43, 35, 26, 92, 178, 28, 2, 223, 82, 5240]])

e R R R W W W W |
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That’s a lot of numbers. It’s often more convenient to look at an image representation
of the confusion matrix, using Matplotlib’s matshow() function:

plt.matshow(conf_mx, cmap=plt.cm.gray)
plt.show()

This confusion matrix looks fairly good, since most images are on the main diagonal,
which means that they were classified correctly. The 5s look slightly darker than the
other digits, which could mean that there are fewer images of 5s in the dataset or that
the classifier does not perform as well on 5s as on other digits. In fact, you can verify
that both are the case.

Let’s focus the plot on the errors. First, you need to divide each value in the confusion
matrix by the number of images in the corresponding class, so you can compare error
rates instead of absolute number of errors (which would make abundant classes look
unfairly bad):

row_sums = conf_mx.sum(axis=1, keepdims=True)
norm_conf_mx = conf_mx / row_sums

Now let’s fill the diagonal with zeros to keep only the errors, and let’s plot the result:

np.fill_diagonal(norm_conf_mx, 0)
plt.matshow(norm_conf_mx, cmap=plt.cm.gray)
plt.show()
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Now you can clearly see the kinds of errors the classifier makes. Remember that rows
represent actual classes, while columns represent predicted classes. The columns for
classes 8 and 9 are quite bright, which tells you that many images get misclassified as
8s or 9s. Similarly, the rows for classes 8 and 9 are also quite bright, telling you that 8s
and 9s are often confused with other digits. Conversely, some rows are pretty dark,
such as row 1: this means that most 1s are classified correctly (a few are confused
with 8s, but that’s about it). Notice that the errors are not perfectly symmetrical; for
example, there are more 5s misclassified as 8s than the reverse.

Analyzing the confusion matrix can often give you insights on ways to improve your
classifier. Looking at this plot, it seems that your efforts should be spent on improving
classification of 8s and 9s, as well as fixing the specific 3/5 confusion. For example,
you could try to gather more training data for these digits. Or you could engineer
new features that would help the classifier—for example, writing an algorithm to
count the number of closed loops (e.g., 8 has two, 6 has one, 5 has none). Or you
could preprocess the images (e.g., using Scikit-Image, Pillow, or OpenCV) to make
some patterns stand out more, such as closed loops.

Analyzing individual errors can also be a good way to gain insights on what your
classifier is doing and why it is failing, but it is more difficult and time-consuming.
For example, let’s plot examples of 3s and 5s:

cla, clb=3, 5

X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]

plt.figure(figsize=(8,8))
plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5)
plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5)
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plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5)
plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5)
plt.show()

The two 5x5 blocks on the left show digits classified as 3s, and the two 5x5 blocks on
the right show images classified as 5s. Some of the digits that the classifier gets wrong
(i.e., in the bottom-left and top-right blocks) are so badly written that even a human
would have trouble classifying them (e.g., the 5 on the 8" row and 1% column truly
looks like a 3). However, most misclassified images seem like obvious errors to us,
and it’s hard to understand why the classifier made the mistakes it did.’ The reason is
that we used a simple SGDClassifier, which is a linear model. All it does is assign a
weight per class to each pixel, and when it sees a new image it just sums up the weigh-
ted pixel intensities to get a score for each class. So since 3s and 5s differ only by a few
pixels, this model will easily confuse them.

The main difference between 3s and 5s is the position of the small line that joins the
top line to the bottom arc. If you draw a 3 with the junction slightly shifted to the left,
the classifier might classify it as a 5, and vice versa. In other words, this classifier is
quite sensitive to image shifting and rotation. So one way to reduce the 3/5 confusion
would be to preprocess the images to ensure that they are well centered and not too
rotated. This will probably help reduce other errors as well.

3 But remember that our brain is a fantastic pattern recognition system, and our visual system does a lot of
complex preprocessing before any information reaches our consciousness, so the fact that it feels simple does
not mean that it is.
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Multilabel Classification

Until now each instance has always been assigned to just one class. In some cases you
may want your classifier to output multiple classes for each instance. For example,
consider a face-recognition classifier: what should it do if it recognizes several people
on the same picture? Of course it should attach one label per person it recognizes. Say
the classifier has been trained to recognize three faces, Alice, Bob, and Charlie; then
when it is shown a picture of Alice and Charlie, it should output [1, 0, 1] (meaning
“Alice yes, Bob no, Charlie yes”). Such a classification system that outputs multiple
binary labels is called a multilabel classification system.

We won't go into face recognition just yet, but let’s look at a simpler example, just for
illustration purposes:

from import KNeighborsClassifier

y_train_large = (y_train >= 7)
y_train_odd = (y_train % 2 == 1)
y_multilabel = np.c_[y_train_large, y_train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)

This code creates a y_multilabel array containing two target labels for each digit
image: the first indicates whether or not the digit is large (7, 8, or 9) and the second
indicates whether or not it is odd. The next lines create a KNeighborsClassifier
instance (which supports multilabel classification, but not all classifiers do) and we
train it using the multiple targets array. Now you can make a prediction, and notice
that it outputs two labels:

>>> knn_clf.predict([some_digit])
array([[False, True]], dtype=bool)

And it gets it right! The digit 5 is indeed not large (False) and odd (True).

There are many ways to evaluate a multilabel classifier, and selecting the right metric
really depends on your project. For example, one approach is to measure the F, score
for each individual label (or any other binary classifier metric discussed earlier), then
simply compute the average score. This code computes the average F, score across all
labels:

>>> y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_train, cv=3)
>>> f1_score(y_train, y_train_knn_pred, average="macro")
0.96845540180280221

This assumes that all labels are equally important, which may not be the case. In par-
ticular, if you have many more pictures of Alice than of Bob or Charlie, you may want
to give more weight to the classifier’s score on pictures of Alice. One simple option is
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to give each label a weight equal to its support (i.e., the number of instances with that
target label). To do this, simply set average="weighted" in the preceding code.*

Multioutput Classification

The last type of classification task we are going to discuss here is called multioutput-
multiclass classification (or simply multioutput classification). It is simply a generaliza-
tion of multilabel classification where each label can be multiclass (i.e., it can have
more than two possible values).

To illustrate this, let’s build a system that removes noise from images. It will take as
input a noisy digit image, and it will (hopefully) output a clean digit image, repre-
sented as an array of pixel intensities, just like the MNIST images. Notice that the
classifier’s output is multilabel (one label per pixel) and each label can have multiple
values (pixel intensity ranges from 0 to 255). It is thus an example of a multioutput
classification system.

The line between classification and regression is sometimes blurry,
such as in this example. Arguably, predicting pixel intensity is more
akin to regression than to classification. Moreover, multioutput
systems are not limited to classification tasks; you could even have
a system that outputs multiple labels per instance, including both
class labels and value labels.

Let’s start by creating the training and test sets by taking the MNIST images and
adding noise to their pixel intensities using NumPy’s randint() function. The target
images will be the original images:

noise = rnd.randint(0, 100, (len(X_train), 784))
noise = rnd.randint(0, 100, (len(X_test), 784))
X_train_mod = X_train + noise

X_test_mod = X_test + noise

y_train_mod = X_train

y_test_mod = X_test

Let’s take a peek at an image from the test set (yes, we're snooping on the test data, so
you should be frowning right now):

4 Scikit-Learn offers a few other averaging options and multilabel classifier metrics; see the documentation for
more details.
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On the left is the noisy input image, and on the right is the clean target image. Now
let’s train the classifier and make it clean this image:

knn_clf.fit(X_train_mod, y_train_mod)
clean_digit = knn_clf.predict([X_test_mod[some_index]])
plot_digit(clean_digit)

Looks close enough to the target! This concludes our tour of classification. Hopefully
you should now know how to select good metrics for classification tasks, pick the
appropriate precision/recall tradeoff, compare classifiers, and more generally build
good classification systems for a variety of tasks.

Exercises

1. Try to build a classifier for the MNIST dataset that achieves over 97% accuracy
on the test set. Hint: the KNeighborsClassifier works quite well for this task;
you just need to find good hyperparameter values (try a grid search on the
weights and n_neighbors hyperparameters).

2. Write a function that can shift an MNIST image in any direction (left, right, up,
or down) by one pixel.” Then, for each image in the training set, create four shif-
ted copies (one per direction) and add them to the training set. Finally, train your
best model on this expanded training set and measure its accuracy on the test set.
You should observe that your model performs even better now! This technique of

5 You can use the shift() function from the scipy.ndimage.interpolation module. For example,
shift(image, [2, 1], cval=0) shifts the image 2 pixels down and 1 pixel to the right.
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artificially growing the training set is called data augmentation or training set
expansion.

3. Tackle the Titanic dataset. A great place to start is on Kaggle.

4. Build a spam classifier (a more challenging exercise):

Download examples of spam and ham from Apache SpamAssassin’s public
datasets.

Unzip the datasets and familiarize yourself with the data format.
Split the datasets into a training set and a test set.

Write a data preparation pipeline to convert each email into a feature vector.
Your preparation pipeline should transform an email into a (sparse) vector
indicating the presence or absence of each possible word. For example, if all
emails only ever contain four words, “Hello,” “how,” “are,” “you,” then the email
“Hello you Hello Hello you” would be converted into a vector [1, 0, 0, 1]
(meaning [“Hello” is present, “how” is absent, “are” is absent, “you” is
present]), or [3, 0, 0, 2] if you prefer to count the number of occurrences of

each word.

You may want to add hyperparameters to your preparation pipeline to control
whether or not to strip off email headers, convert each email to lowercase,
remove punctuation, replace all URLs with “URL,” replace all numbers with
“NUMBER;” or even perform stemming (i.e., trim off word endings; there are
Python libraries available to do this).

Then try out several classifiers and see if you can build a great spam classifier,
with both high recall and high precision.

Solutions to these exercises are available in the online Jupyter notebooks at https://
github.com/ageron/handson-ml.
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CHAPTER 4
Training Models

So far we have treated Machine Learning models and their training algorithms mostly
like black boxes. If you went through some of the exercises in the previous chapters,
you may have been surprised by how much you can get done without knowing any-
thing about what’s under the hood: you optimized a regression system, you improved
a digit image classifier, and you even built a spam classifier from scratch—all this
without knowing how they actually work. Indeed, in many situations you don’t really
need to know the implementation details.

However, having a good understanding of how things work can help you quickly
home in on the appropriate model, the right training algorithm to use, and a good set
of hyperparameters for your task. Understanding what’s under the hood will also help
you debug issues and perform error analysis more efficiently. Lastly, most of the top-
ics discussed in this chapter will be essential in understanding, building, and training
neural networks (discussed in Part II of this book).

In this chapter, we will start by looking at the Linear Regression model, one of the
simplest models there is. We will discuss two very different ways to train it:

o Using a direct “closed-form” equation that directly computes the model parame-
ters that best fit the model to the training set (i.e., the model parameters that
minimize the cost function over the training set).

» Using an iterative optimization approach, called Gradient Descent (GD), that
gradually tweaks the model parameters to minimize the cost function over the
training set, eventually converging to the same set of parameters as the first
method. We will look at a few variants of Gradient Descent that we will use again
and again when we study neural networks in Part II: Batch GD, Mini-batch GD,
and Stochastic GD.
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Next we will look at Polynomial Regression, a more complex model that can fit non-
linear datasets. Since this model has more parameters than Linear Regression, it is
more prone to overfitting the training data, so we will look at how to detect whether
or not this is the case, using learning curves, and then we will look at several regulari-
zation techniques that can reduce the risk of overfitting the training set.

Finally, we will look at two more models that are commonly used for classification
tasks: Logistic Regression and Softmax Regression.

There will be quite a few math equations in this chapter, using basic
notions of linear algebra and calculus. To understand these equa-
tions, you will need to know what vectors and matrices are, how to

\ transpose them, what the dot product is, what matrix inverse is,
and what partial derivatives are. If you are unfamiliar with these
concepts, please go through the linear algebra and calculus intro-
ductory tutorials available as Jupyter notebooks in the online sup-
plemental material. For those who are truly allergic to
mathematics, you should still go through this chapter and simply
skip the equations; hopefully, the text will be sufficient to help you
understand most of the concepts.

Linear Regression

In Chapter 1, we looked at a simple regression model of life satisfaction: life_satisfac-
tion = 0, + 6, x GDP_per_capita.

This model is just a linear function of the input feature GDP_per_capita. 8, and 0, are
the model’s parameters.

More generally, a linear model makes a prediction by simply computing a weighted
sum of the input features, plus a constant called the bias term (also called the intercept
term), as shown in Equation 4-1.

Equation 4-1. Linear Regression model prediction

y=0y+0x +0,x,++0,x,

o jis the predicted value.
« nis the number of features.
o x; is the i feature value.

+ 0, is the j* model parameter (including the bias term 6, and the feature weights
0,,0, -, 0,).
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This can be written much more concisely using a vectorized form, as shown in Equa-
tion 4-2.

Equation 4-2. Linear Regression model prediction (vectorized form)

j=hyx)=0"-x

o 0 is the model’s parameter vector, containing the bias term 6, and the feature
weights 0, to 0,..

o 0" is the transpose of  (a row vector instead of a column vector).
« x is the instance’s feature vector, containing x, to x,, with x, always equal to 1.
o 07 xis the dot product of 8 and x.

o hyis the hypothesis function, using the model parameters 0.

Okay, that’s the Linear Regression model, so now how do we train it? Well, recall that
training a model means setting its parameters so that the model best fits the training
set. For this purpose, we first need a measure of how well (or poorly) the model fits
the training data. In Chapter 2 we saw that the most common performance measure
of a regression model is the Root Mean Square Error (RMSE) (Equation 2-1). There-
fore, to train a Linear Regression model, you need to find the value of 6 that minimi-
zes the RMSE. In practice, it is simpler to minimize the Mean Square Error (MSE)
than the RMSE, and it leads to the same result (because the value that minimizes a
function also minimizes its square root).!

The MSE of a Linear Regression hypothesis i, on a training set X is calculated using
Equation 4-3.

Equation 4-3. MSE cost function for a Linear Regression model

m . .
MSE(X, hy) = %i; (eT xW y(,))z

Most of these notations were presented in Chapter 2 (see “Notations” on page 38).
The only difference is that we write h, instead of just h in order to make it clear that
the model is parametrized by the vector 6. To simplify notations, we will just write
MSE(6) instead of MSE(X, h,).

1 It is often the case that a learning algorithm will try to optimize a different function than the performance
measure used to evaluate the final model. This is generally because that function is easier to compute, because
it has useful differentiation properties that the performance measure lacks, or because we want to constrain
the model during training, as we will see when we discuss regularization.
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The Normal Equation

To find the value of 0 that minimizes the cost function, there is a closed-form solution
—in other words, a mathematical equation that gives the result directly. This is called
the Normal Equation (Equation 4-4).

Equation 4-4. Normal Equation
A -1
0=(x"-x) .x".y
« 0 is the value of 8 that minimizes the cost function.

o y is the vector of target values containing y¥ to y™.

Let’s generate some linear-looking data to test this equation on (Figure 4-1):

import as

X = 2 * np.random.rand(100, 1)
y =4 + 3 * X + np.random.randn(100, 1)

14| ]
12} .

10* . . ®e o |

Yy 8 MY

0
0.0 0.5 1.0 1.5 2.0
|

Figure 4-1. Randomly generated linear dataset

2 The demonstration that this returns the value of 6 that minimizes the cost function is outside the scope of this
book.
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Now let’s compute 6 using the Normal Equation. We will use the inv() function from
NumPy’s Linear Algebra module (np.1linalg) to compute the inverse of a matrix, and
the dot() method for matrix multiplication:

X_b = np.c_[np.ones((100, 1)), X] # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)

The actual function that we used to generate the data is y = 4 + 3x, + Gaussian noise.
Let’s see what the equation found:

>>> theta_best
array([[ 4.21509616],
[ 2.77011339]])

We would have hoped for 6, = 4 and 6, = 3 instead of 6, = 3.865 and 0, = 3.139. Close
enough, but the noise made it impossible to recover the exact parameters of the origi-
nal function.

Now you can make predictions using 0:

>>> X_new = np.array([[0], [2]1])
>>> X_new_b = np.c_[np.ones((2, 1)), X_new] # add x0 = 1 to each instance
>>> y_predict = X_new_b.dot(theta_best)
>>> y_predict
array([[ 4.21509616],
[ 9.755322931])

Let’s plot this model’s predictions (Figure 4-2):

plt.plot(X_new, y _predict, "r-")
plt.plot(X, y, "b.")
plt.axis([0, 2, 0, 15])
plt.show()

Figure 4-2. Linear Regression model predictions
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The equivalent code using Scikit-Learn looks like this:?

>>> from import LinearRegression
>>> lin_reg = LinearRegression()
>>> lin_reg.fit(X, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([ 4.21509616]), array([[ 2.77011339]1]))
>>> lin_reg.predict(X_new)
array([[ 4.21509616],
[ 9.75532293]])

Computational Complexity

The Normal Equation computes the inverse of X” - X, which is an n x n matrix
(where n is the number of features). The computational complexity of inverting such a
matrix is typically about O(n**) to O(n’) (depending on the implementation). In
other words, if you double the number of features, you multiply the computation
time by roughly 224 = 5.3 to 2> = 8.

The Normal Equation gets very slow when the number of features
grows large (e.g., 100,000).

On the positive side, this equation is linear with regards to the number of instances in
the training set (it is O(m)), so it handles large training sets efficiently, provided they
can fit in memory.

Also, once you have trained your Linear Regression model (using the Normal Equa-
tion or any other algorithm), predictions are very fast: the computational complexity
is linear with regards to both the number of instances you want to make predictions
on and the number of features. In other words, making predictions on twice as many
instances (or twice as many features) will just take roughly twice as much time.

Now we will look at very different ways to train a Linear Regression model, better
suited for cases where there are a large number of features, or too many training
instances to fit in memory.

3 Note that Scikit-Learn separates the bias term (intercept_) from the feature weights (coef_).
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Gradient Descent

Gradient Descent is a very generic optimization algorithm capable of finding optimal
solutions to a wide range of problems. The general idea of Gradient Descent is to
tweak parameters iteratively in order to minimize a cost function.

Suppose you are lost in the mountains in a dense fog; you can only feel the slope of
the ground below your feet. A good strategy to get to the bottom of the valley quickly
is to go downhill in the direction of the steepest slope. This is exactly what Gradient
Descent does: it measures the local gradient of the error function with regards to the

parameter vector 0, and it goes in the direction of descending gradient. Once the gra-
dient is zero, you have reached a minimum!

Concretely, you start by filling 0 with random values (this is called random initializa-
tion), and then you improve it gradually, taking one baby step at a time, each step
attempting to decrease the cost function (e.g., the MSE), until the algorithm converges
to a minimum (see Figure 4-3).

Figure 4-3. Gradient Descent

An important parameter in Gradient Descent is the size of the steps, determined by
the learning rate hyperparameter. If the learning rate is too small, then the algorithm
will have to go through many iterations to converge, which will take a long time (see
Figure 4-4).
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Figure 4-4. Learning rate too small

On the other hand, if the learning rate is too high, you might jump across the valley
and end up on the other side, possibly even higher up than you were before. This
might make the algorithm diverge, with larger and larger values, failing to find a good
solution (see Figure 4-5).

Figure 4-5. Learning rate too large

Finally, not all cost functions look like nice regular bowls. There may be holes, ridges,
plateaus, and all sorts of irregular terrains, making convergence to the minimum very
difficult. Figure 4-6 shows the two main challenges with Gradient Descent: if the ran-
dom initialization starts the algorithm on the left, then it will converge to a local mini-
mum, which is not as good as the global minimum. If it starts on the right, then it will
take a very long time to cross the plateau, and if you stop too early you will never
reach the global minimum.
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Figure 4-6. Gradient Descent pitfalls

Fortunately, the MSE cost function for a Linear Regression model happens to be a
convex function, which means that if you pick any two points on the curve, the line
segment joining them never crosses the curve. This implies that there are no local
minima, just one global minimum. It is also a continuous function with a slope that
never changes abruptly.* These two facts have a great consequence: Gradient Descent
is guaranteed to approach arbitrarily close the global minimum (if you wait long
enough and if the learning rate is not too high).

In fact, the cost function has the shape of a bowl, but it can be an elongated bowl if
the features have very different scales. Figure 4-7 shows Gradient Descent on a train-
ing set where features 1 and 2 have the same scale (on the left), and on a training set
where feature 1 has much smaller values than feature 2 (on the right).?

Figure 4-7. Gradient Descent with and without feature scaling

4 Technically speaking, its derivative is Lipschitz continuous.

5 Since feature 1 is smaller, it takes a larger change in 0; to affect the cost function, which is why the bowl is
elongated along the 6, axis.
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As you can see, on the left the Gradient Descent algorithm goes straight toward the
minimum, thereby reaching it quickly, whereas on the right it first goes in a direction
almost orthogonal to the direction of the global minimum, and it ends with a long
march down an almost flat valley. It will eventually reach the minimum, but it will
take a long time.

When using Gradient Descent, you should ensure that all features
have a similar scale (e.g., using Scikit-Learn’s StandardScaler
class), or else it will take much longer to converge.

This diagram also illustrates the fact that training a model means searching for a
combination of model parameters that minimizes a cost function (over the training
set). It is a search in the model’s parameter space: the more parameters a model has,
the more dimensions this space has, and the harder the search is: searching for a nee-
dle in a 300-dimensional haystack is much trickier than in three dimensions. Fortu-
nately, since the cost function is convex in the case of Linear Regression, the needle is
simply at the bottom of the bowl.

Batch Gradient Descent

To implement Gradient Descent, you need to compute the gradient of the cost func-
tion with regards to each model parameter 6, In other words, you need to calculate
how much the cost function will change if you change 6, just a little bit. This is called
a partial derivative. It is like asking “what is the slope of the mountain under my feet
if I face east?” and then asking the same question facing north (and so on for all other
dimensions, if you can imagine a universe with more than three dimensions). Equa-
tion 4-5 computes the partial derivative of the cost function with regards to parame-

ter 6, noted MSE(G)

Equation 4-5. Partial derivatives of the cost function
0 3 D) 4
a9, MSF( w2 6 X0 y0)

Instead of computing these gradients individually, you can use Equation 4-6 to com-
pute them all in one go. The gradient vector, noted V MSE(8), contains all the partial
derivatives of the cost function (one for each model parameter).
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Equation 4-6. Gradient vector of the cost function

v MSE(6) = | 99, =X (X-6-y)

d
5~ MSE(6)

n

Notice that this formula involves calculations over the full training
set X, at each Gradient Descent step! This is why the algorithm is
called Batch Gradient Descent: it uses the whole batch of training
data at every step. As a result it is terribly slow on very large train-
ing sets (but we will see much faster Gradient Descent algorithms
shortly). However, Gradient Descent scales well with the number of
features; training a Linear Regression model when there are hun-
dreds of thousands of features is much faster using Gradient
Descent than using the Normal Equation.

Once you have the gradient vector, which points uphill, just go in the opposite direc-
tion to go downhill. This means subtracting V,MSE(6) from 6. This is where the

learning rate # comes into play:® multiply the gradient vector by # to determine the
size of the downhill step (Equation 4-7).

Equation 4-7. Gradient Descent step
gt SP) = g — vy MSE(6)

Let’s look at a quick implementation of this algorithm:

eta = 0.1 # learning rate
n_iterations = 1000
m = 100

theta = np.random.randn(2,1) # random initialization
for iteration in range(n_iterations):

gradients = 2/m * X_b.T.dot(X_b.dot(theta) - y)
theta = theta - eta * gradients

6 Eta () is the 7t letter of the Greek alphabet.
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That wasn’t too hard! Let’s look at the resulting theta:

>>> theta
array([[ 4.21509616],
[ 2.77011339]])

Hey, that’s exactly what the Normal Equation found! Gradient Descent worked per-
fectly. But what if you had used a different learning rate eta? Figure 4-8 shows the

first 10 steps of Gradient Descent using three different learning rates (the dashed line
represents the starting point).

n=0.02 n=0.1 n=0.5
14 {1 14¢ 1 14t ]
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Figure 4-8. Gradient Descent with various learning rates

On the left, the learning rate is too low: the algorithm will eventually reach the solu-
tion, but it will take a long time. In the middle, the learning rate looks pretty good: in
just a few iterations, it has already converged to the solution. On the right, the learn-
ing rate is too high: the algorithm diverges, jumping all over the place and actually
getting further and further away from the solution at every step.

To find a good learning rate, you can use grid search (see Chapter 2). However, you
may want to limit the number of iterations so that grid search can eliminate models
that take too long to converge.

You may wonder how to set the number of iterations. If it is too low, you will still be
far away from the optimal solution when the algorithm stops, but if it is too high, you
will waste time while the model parameters do not change anymore. A simple solu-
tion is to set a very large number of iterations but to interrupt the algorithm when the
gradient vector becomes tiny—that is, when its norm becomes smaller than a tiny
number € (called the tolerance)—because this happens when Gradient Descent has
(almost) reached the minimum.
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Convergence Rate

When the cost function is convex and its slope does not change abruptly (as is the

case for the MSE cost function), it can be shown that Batch Gradient Descent with a
1
iterations
the tolerance e by 10 (to have a more precise solution), then the algorithm will have

to run about 10 times more iterations.

tixed learning rate has a convergence rate of O( ) In other words, if you divide

Stochastic Gradient Descent

The main problem with Batch Gradient Descent is the fact that it uses the whole
training set to compute the gradients at every step, which makes it very slow when
the training set is large. At the opposite extreme, Stochastic Gradient Descent just
picks a random instance in the training set at every step and computes the gradients
based only on that single instance. Obviously this makes the algorithm much faster
since it has very little data to manipulate at every iteration. It also makes it possible to
train on huge training sets, since only one instance needs to be in memory at each
iteration (SGD can be implemented as an out-of-core algorithm.”)

On the other hand, due to its stochastic (i.e., random) nature, this algorithm is much
less regular than Batch Gradient Descent: instead of gently decreasing until it reaches
the minimum, the cost function will bounce up and down, decreasing only on aver-
age. Over time it will end up very close to the minimum, but once it gets there it will
continue to bounce around, never settling down (see Figure 4-9). So once the algo-
rithm stops, the final parameter values are good, but not optimal.

Figure 4-9. Stochastic Gradient Descent

7 Out-of-core algorithms are discussed in Chapter 1.
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When the cost function is very irregular (as in Figure 4-6), this can actually help the
algorithm jump out of local minima, so Stochastic Gradient Descent has a better
chance of finding the global minimum than Batch Gradient Descent does.

Therefore randomness is good to escape from local optima, but bad because it means
that the algorithm can never settle at the minimum. One solution to this dilemma is
to gradually reduce the learning rate. The steps start out large (which helps make
quick progress and escape local minima), then get smaller and smaller, allowing the
algorithm to settle at the global minimum. This process is called simulated annealing,
because it resembles the process of annealing in metallurgy where molten metal is
slowly cooled down. The function that determines the learning rate at each iteration
is called the learning schedule. If the learning rate is reduced too quickly, you may get
stuck in a local minimum, or even end up frozen halfway to the minimum. If the
learning rate is reduced too slowly, you may jump around the minimum for a long
time and end up with a suboptimal solution if you halt training too early.

This code implements Stochastic Gradient Descent using a simple learning schedule:

n_epochs = 50
t0, t1 = 5, 50 # learning schedule hyperparameters

def learning_schedule(t):
return t0 / (t + t1)

theta = np.random.randn(2,1) # random initialization

for epoch in range(n_epochs):
for 1 in range(m):

random_index = np.random.randint(m)
x1 = X_b[random_1index:random_index+1]
yi = y[random_1index:random_index+1]
gradients = 2 * xi.T.dot(xi.dot(theta) - yi)
eta = learning_schedule(epoch * m + 1)
theta = theta - eta * gradients

By convention we iterate by rounds of m iterations; each round is called an epoch.
While the Batch Gradient Descent code iterated 1,000 times through the whole train-
ing set, this code goes through the training set only 50 times and reaches a fairly good
solution:

>>> theta

array([[ 4.21076011],
[ 2.74856079]])

Figure 4-10 shows the first 10 steps of training (notice how irregular the steps are).
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Figure 4-10. Stochastic Gradient Descent first 10 steps

Note that since instances are picked randomly, some instances may be picked several
times per epoch while others may not be picked at all. If you want to be sure that the
algorithm goes through every instance at each epoch, another approach is to shuffle
the training set, then go through it instance by instance, then shuffle it again, and so
on. However, this generally converges more slowly.

To perform Linear Regression using SGD with Scikit-Learn, you can use the SGDRe
gressor class, which defaults to optimizing the squared error cost function. The fol-
lowing code runs 50 epochs, starting with a learning rate of 0.1 (eta0=0.1), using the
default learning schedule (different from the preceding one), and it does not use any
regularization (penalty=None; more details on this shortly):

from import SGDRegressor

sgd_reg = SGDRegressor(n_iter=50, penalty=None, eta0=0.1)

sgd_reg.fit(X, y.ravel())
Once again, you find a solution very close to the one returned by the Normal Equa-
tion:

>>> sgd_reg.intercept_, sgd_reg.coef_
(array([ 4.18380366]), array([ 2.74205299]))

Mini-batch Gradient Descent

The last Gradient Descent algorithm we will look at is called Mini-batch Gradient
Descent. It is quite simple to understand once you know Batch and Stochastic Gradi-
ent Descent: at each step, instead of computing the gradients based on the full train-
ing set (as in Batch GD) or based on just one instance (as in Stochastic GD), Mini-
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batch GD computes the gradients on small random sets of instances called mini-
batches. The main advantage of Mini-batch GD over Stochastic GD is that you can
get a performance boost from hardware optimization of matrix operations, especially
when using GPUs.

The algorithm’s progress in parameter space is less erratic than with SGD, especially
with fairly large mini-batches. As a result, Mini-batch GD will end up walking
around a bit closer to the minimum than SGD. But, on the other hand, it may be
harder for it to escape from local minima (in the case of problems that suffer from
local minima, unlike Linear Regression as we saw earlier). Figure 4-11 shows the
paths taken by the three Gradient Descent algorithms in parameter space during
training. They all end up near the minimum, but Batch GD’s path actually stops at the
minimum, while both Stochastic GD and Mini-batch GD continue to walk around.
However, don’t forget that Batch GD takes a lot of time to take each step, and Stochas-
tic GD and Mini-batch GD would also reach the minimum if you used a good learn-
ing schedule.

Figure 4-11. Gradient Descent paths in parameter space

Let’s compare the algorithms we've discussed so far for Linear Regression® (recall that
m is the number of training instances and # is the number of features); see Table 4-1.

Table 4-1. Comparison of algorithms for Linear Regression

Algorithm Largem Out-of-core support Largen Hyperparams Scaling required Scikit-Learn
Normal Equation  Fast No Slow 0 No LinearRegression
Batch GD Slow No Fast 2 Yes n/a

8 While the Normal Equation can only perform Linear Regression, the Gradient Descent algorithms can be
used to train many other models, as we will see.
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Algorithm
Stochastic GD
Mini-batch GD

Large m Out-of-core support Large n

Hyperparams Scaling required Scikit-Learn
>)

22

Yes Fast

Yes

Fast Yes SGDRegressor

Fast Fast Yes n/a

There is almost no difference after training: all these algorithms
end up with very similar models and make predictions in exactly
the same way.

Polynomial Regression

What if your data is actually more complex than a simple straight line? Surprisingly,
you can actually use a linear model to fit nonlinear data. A simple way to do this is to
add powers of each feature as new features, then train a linear model on this extended
set of features. This technique is called Polynomial Regression.

Lets look at an example. First, let’s generate some nonlinear data, based on a simple
quadratic equation’ (plus some noise; see Figure 4-12):

m =

X
y

100
6 * np.random.rand(m, 1) - 3
0.5 * X**2 + X + 2 + np.random.randn(m, 1)
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Figure 4-12. Generated nonlinear and noisy dataset

9 A quadratic equation is of the form y = ax? + bx + c.

Polynomial Regression
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Clearly, a straight line will never fit this data properly. So let’s use Scikit-Learn’s Poly
nomialFeatures class to transform our training data, adding the square (2"!-degree
polynomial) of each feature in the training set as new features (in this case there is
just one feature):

>>> from import PolynomialFeatures

>>> poly_features = PolynomialFeatures(degree=2, include_bias=False)
>>> X_poly = poly_features.fit_transform(X)

>>> X[0]

array([-0.75275929])

>>> X_poly[0]

array([-0.75275929, 0.56664654])

X_poly now contains the original feature of X plus the square of this feature. Now you
can fit a LinearRegression model to this extended training data (Figure 4-13):

>>> lin_reg = LinearRegression()

>>> lin_reg.fit(X_poly, y)

>>> lin_reg.intercept_, lin_reg.coef_
(array([ 1.78134581]), array([[ ©0.93366893, 0.56456263]1]))

10

— Predictions

Figure 4-13. Polynomial Regression model predictions

Not bad: the model estimates y = 0. 56x% +0.93x, +1.78 when in fact the original

function was y = 0. Sxf +1.0x, + 2.0 + Gaussian noise.

Note that when there are multiple features, Polynomial Regression is capable of find-
ing relationships between features (which is something a plain Linear Regression
model cannot do). This is made possible by the fact that PolynomialFeatures also
adds all combinations of features up to the given degree. For example, if there were
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two features a and b, PolynomialFeatures with degree=3 would not only add the
features a?, a’, b% and b’, but also the combinations ab, a*b, and ab*.

PolynomialFeatures(degree=d) transforms an array containing n
(n+d)!
d!'n!
factorial of n, equal to 1 X 2 x 3 x -+ x n. Beware of the combinato-

rial explosion of the number of features!

features, where n! is the

features into an array containing

Learning Curves

If you perform high-degree Polynomial Regression, you will likely fit the training
data much better than with plain Linear Regression. For example, Figure 4-14 applies
a 300-degree polynomial model to the preceding training data, and compares the
result with a pure linear model and a quadratic model (2"-degree polynomial).
Notice how the 300-degree polynomial model wiggles around to get as close as possi-
ble to the training instances.

Figure 4-14. High-degree Polynomial Regression

Of course, this high-degree Polynomial Regression model is severely overfitting the
training data, while the linear model is underfitting it. The model that will generalize
best in this case is the quadratic model. It makes sense since the data was generated
using a quadratic model, but in general you won't know what function generated the
data, so how can you decide how complex your model should be? How can you tell
that your model is overfitting or underfitting the data?
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In Chapter 2 you used cross-validation to get an estimate of a model’s generalization
performance. If a model performs well on the training data but generalizes poorly
according to the cross-validation metrics, then your model is overfitting. If it per-
forms poorly on both, then it is underfitting. This is one way to tell when a model is
too simple or too complex.

Another way is to look at the learning curves: these are plots of the model’s perfor-
mance on the training set and the validation set as a function of the training set size.
To generate the plots, simply train the model several times on different sized subsets
of the training set. The following code defines a function that plots the learning
curves of a model given some training data:

from import mean_squared_error
from import train_test_split

def plot_learning_curves(model, X, y):
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2)
train_errors, val_errors = [], []
for m in range(1, len(X_train)):
model.fit(X_train[:m], y_train[:m])
y_train_predict = model.predict(X_train[:m])
y_val_predict = model.predict(X_val)
train_errors.append(mean_squared_error(y_train_predict, y_train[:m]))
val_errors.append(mean_squared_error(y_val_predict, y_val))
plt.plot(np.sqgrt(train_errors), "r-+", linewidth=2, label="train")
plt.plot(np.sgrt(val_errors), "b-", linewidth=3, label="val")

Let’s look at the learning curves of the plain Linear Regression model (a straight line;
Figure 4-15):

lin_reg = LinearRegression()
plot_learning_curves(lin_reg, X, y)

Figure 4-15. Learning curves

124 | Chapter4: Training Models



This deserves a bit of explanation. First, let’s look at the performance on the training
data: when there are just one or two instances in the training set, the model can fit
them perfectly, which is why the curve starts at zero. But as new instances are added
to the training set, it becomes impossible for the model to fit the training data per-
fectly, both because the data is noisy and because it is not linear at all. So the error on
the training data goes up until it reaches a plateau, at which point adding new instan-
ces to the training set doesn’t make the average error much better or worse. Now let’s
look at the performance of the model on the validation data. When the model is
trained on very few training instances, it is incapable of generalizing properly, which
is why the validation error is initially quite big. Then as the model is shown more
training examples, it learns and thus the validation error slowly goes down. However,
once again a straight line cannot do a good job modeling the data, so the error ends
up at a plateau, very close to the other curve.

These learning curves are typical of an underfitting model. Both curves have reached
a plateau; they are close and fairly high.

If your model is underfitting the training data, adding more train-
ing examples will not help. You need to use a more complex model
or come up with better features.

Now let’s look at the learning curves of a 10""-degree polynomial model on the same
data (Figure 4-16):

from import Pipeline

polynomial_regression = Pipeline((
("poly_features", PolynomialFeatures(degree=10, include_bias=False)),
("sgd_reg", LinearRegression()),

))

plot_learning_curves(polynomial_regression, X, y)

These learning curves look a bit like the previous ones, but there are two very impor-
tant differences:

« The error on the training data is much lower than with the Linear Regression
model.

o There is a gap between the curves. This means that the model performs signifi-
cantly better on the training data than on the validation data, which is the hall-
mark of an overfitting model. However, if you used a much larger training set,
the two curves would continue to get closer.
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Figure 4-16. Learning curves for the polynomial model

One way to improve an overfitting model is to feed it more training
data until the validation error reaches the training error.

The Bias/Variance Tradeoff

An important theoretical result of statistics and Machine Learning is the fact that a
model’s generalization error can be expressed as the sum of three very different
errors:

Bias
This part of the generalization error is due to wrong assumptions, such as assum-
ing that the data is linear when it is actually quadratic. A high-bias model is most
likely to underfit the training data.'

Variance
This part is due to the model’s excessive sensitivity to small variations in the
training data. A model with many degrees of freedom (such as a high-degree pol-
ynomial model) is likely to have high variance, and thus to overfit the training
data.

10 This notion of bias is not to be confused with the bias term of linear models.
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Irreducible error
This part is due to the noisiness of the data itself. The only way to reduce this
part of the error is to clean up the data (e.g., fix the data sources, such as broken
sensors, or detect and remove outliers).

Increasing a model’s complexity will typically increase its variance and reduce its bias.
Conversely, reducing a model’s complexity increases its bias and reduces its variance.
This is why it is called a tradeoft.

Regularized Linear Models

As we saw in Chapters 1 and 2, a good way to reduce overfitting is to regularize the
model (i.e., to constrain it): the fewer degrees of freedom it has, the harder it will be
for it to overfit the data. For example, a simple way to regularize a polynomial model
is to reduce the number of polynomial degrees.

For a linear model, regularization is typically achieved by constraining the weights of
the model. We will now look at Ridge Regression, Lasso Regression, and Elastic Net,
which implement three different ways to constrain the weights.

Ridge Regression

Ridge Regression (also called Tikhonov regularization) is a regularized version of Lin-
ear Regression: a regularization term equal to aX}_ 101.2 is added to the cost function.

This forces the learning algorithm to not only fit the data but also keep the model
weights as small as possible. Note that the regularization term should only be added
to the cost function during training. Once the model is trained, you want to evaluate
the model’s performance using the unregularized performance measure.

It is quite common for the cost function used during training to be
different from the performance measure used for testing. Apart
from regularization, another reason why they might be different is
that a good training cost function should have optimization-
friendly derivatives, while the performance measure used for test-
ing should be as close as possible to the final objective. A good
example of this is a classifier trained using a cost function such as
the log loss (discussed in a moment) but evaluated using precision/
recall.

The hyperparameter a controls how much you want to regularize the model. If @ = 0
then Ridge Regression is just Linear Regression. If « is very large, then all weights end
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up very close to zero and the result is a flat line going through the data’s mean. Equa-
tion 4-8 presents the Ridge Regression cost function.

Equation 4-8. Ridge Regression cost function

7(6) = MSE(6) + a%i 6

Note that the bias term 0, is not regularized (the sum starts at i = 1, not 0). If we
define w as the vector of feature weights (6, to 0,), then the regularization term is
simply equal to %(|| w ||,)%, where || - ||, represents the ¢, norm of the weight vector."?
For Gradient Descent, just add aw to the MSE gradient vector (Equation 4-6).

It is important to scale the data (e.g., using a StandardScaler)
before performing Ridge Regression, as it is sensitive to the scale of
the input features. This is true of most regularized models.

Figure 4-17 shows several Ridge models trained on some linear data using different «
value. On the left, plain Ridge models are used, leading to linear predictions. On the
right, the data is first expanded using PolynomialFeatures(degree=10), then it is
scaled using a StandardScaler, and finally the Ridge models are applied to the result-
ing features: this is Polynomial Regression with Ridge regularization. Note how
increasing o leads to flatter (i.e., less extreme, more reasonable) predictions; this
reduces the model’s variance but increases its bias.

As with Linear Regression, we can perform Ridge Regression either by computing a
closed-form equation or by performing Gradient Descent. The pros and cons are the
same. Equation 4-9 shows the closed-form solution (where A is the n x n identity
matrix" except with a 0 in the top-left cell, corresponding to the bias term).

11 It is common to use the notation J(6) for cost functions that don’t have a short name; we will often use this
notation throughout the rest of this book. The context will make it clear which cost function is being dis-
cussed.

12 Norms are discussed in Chapter 2.

13 A square matrix full of Os except for 1s on the main diagonal (top-left to bottom-right).
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Figure 4-17. Ridge Regression

Equation 4-9. Ridge Regression closed-form solution

6=(x"-x+aa) " -xTy

Here is how to perform Ridge Regression with Scikit-Learn using a closed-form solu-
tion (a variant of Equation 4-9 using a matrix factorization technique by André-Louis
Cholesky):

>>> from import Ridge

>>> ridge_reg = Ridge(alpha=1, solver="cholesky")
>>> ridge_reg.fit(X, y)

>>> ridge_reg.predict([[1.5]])

array([[ 1.55071465]])

And using Stochastic Gradient Descent:'

>>> sgd_reg = SGDRegressor(penalty="12")
>>> sgd_reg.fit(X, y.ravel())

>>> sgd_reg.predict([[1.5]])

array([[ 1.13500145]])

The penalty hyperparameter sets the type of regularization term to use. Specifying
"12" indicates that you want SGD to add a regularization term to the cost function

equal to half the square of the ¢, norm of the weight vector: this is simply Ridge
Regression.

14 Alternatively you can use the Ridge class with the "sag" solver. Stochastic Average GD is a variant of SGD.
For more details, see the presentation “Minimizing Finite Sums with the Stochastic Average Gradient Algo-
rithm” by Mark Schmidt et al. from the University of British Columbia.
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Lasso Regression

Least Absolute Shrinkage and Selection Operator Regression (simply called Lasso
Regression) is another regularized version of Linear Regression: just like Ridge
Regression, it adds a regularization term to the cost function, but it uses the £, norm
of the weight vector instead of half the square of the £, norm (see Equation 4-10).

Equation 4-10. Lasso Regression cost function

J(0) = MSE(0) + (xél |6

Figure 4-18 shows the same thing as Figure 4-17 but replaces Ridge models with
Lasso models and uses smaller « values.

Figure 4-18. Lasso Regression

An important characteristic of Lasso Regression is that it tends to completely elimi-
nate the weights of the least important features (i.e., set them to zero). For example,
the dashed line in the right plot on Figure 4-18 (with & = 107) looks quadratic, almost
linear: all the weights for the high-degree polynomial features are equal to zero. In
other words, Lasso Regression automatically performs feature selection and outputs a
sparse model (i.e., with few nonzero feature weights).

You can get a sense of why this is the case by looking at Figure 4-19: on the top-left
plot, the background contours (ellipses) represent an unregularized MSE cost func-
tion (a = 0), and the white circles show the Batch Gradient Descent path with that
cost function. The foreground contours (diamonds) represent the ¢, penalty, and the
triangles show the BGD path for this penalty only (a« - o). Notice how the path first
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reaches 0, = 0, then rolls down a gutter until it reaches 8, = 0. On the top-right plot,
the contours represent the same cost function plus an ¢, penalty with & = 0.5. The
global minimum is on the 6, = 0 axis. BGD first reaches 6, = 0, then rolls down the
gutter until it reaches the global minimum. The two bottom plots show the same
thing but uses an ¢, penalty instead. The regularized minimum is closer to 6 = 0 than
the unregularized minimum, but the weights do not get fully eliminated.

Figure 4-19. Lasso versus Ridge regularization

On the Lasso cost function, the BGD path tends to bounce across
the gutter toward the end. This is because the slope changes
abruptly at 8, = 0. You need to gradually reduce the learning rate in
order to actually converge to the global minimum.

The Lasso cost function is not differentiable at 6, = 0 (for i = 1, 2, ---, n), but Gradient
Descent still works fine if you use a subgradient vector g' instead when any 0, = 0.
Equation 4-11 shows a subgradient vector equation you can use for Gradient Descent
with the Lasso cost function.

15 You can think of a subgradient vector at a nondifferentiable point as an intermediate vector between the gra-
dient vectors around that point.
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Equation 4-11. Lasso Regression subgradient vector

ign (0
sign (6)) ~1if 6,<0
sign (0 .
8(6,]) = VoMSE(6) + « 8 ( 2 where sign (6,) = {0 if 6,=0
+1if 6,>0

sign (6,)

Here is a small Scikit-Learn example using the Lasso class. Note that you could
instead use an SGDRegressor(penalty="11").

>>> from import Lasso
>>> lasso_reg = Lasso(alpha=0.1)

>>> lasso_reg.fit(X, y)

>>> lasso_reg.predict([[1.5]])

array([ 1.53788174])

Elastic Net

Elastic Net is a middle ground between Ridge Regression and Lasso Regression. The
regularization term is a simple mix of both Ridge and Lasso’s regularization terms,
and you can control the mix ratio r. When r = 0, Elastic Net is equivalent to Ridge
Regression, and when r = 1, it is equivalent to Lasso Regression (see Equation 4-12).

Equation 4-12. Elastic Net cost function

n n
J(6) = MSE(6) + rac Y. |6 + ——a Y. 67
i=1 i=1

1

2
So when should you use Linear Regression, Ridge, Lasso, or Elastic Net? It is almost
always preferable to have at least a little bit of regularization, so generally you should
avoid plain Linear Regression. Ridge is a good default, but if you suspect that only a
few features are actually useful, you should prefer Lasso or Elastic Net since they tend
to reduce the useless features’ weights down to zero as we have discussed. In general,
Elastic Net is preferred over Lasso since Lasso may behave erratically when the num-
ber of features is greater than the number of training instances or when several fea-
tures are strongly correlated.

Here is a short example using Scikit-Learns ElasticNet (11_ratio corresponds to
the mix ratio r):

>>> from import ElasticNet

>>> elastic_net = ElasticNet(alpha=0.1, 11_ratio=0.5)
>>> elastic_net.fit(X, y)

>>> elastic_net.predict([[1.5]])

array([ 1.54333232])
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Early Stopping

A very different way to regularize iterative learning algorithms such as Gradient
Descent is to stop training as soon as the validation error reaches a minimum. This is
called early stopping. Figure 4-20 shows a complex model (in this case a high-degree
Polynomial Regression model) being trained using Batch Gradient Descent. As the
epochs go by, the algorithm learns and its prediction error (RMSE) on the training set
naturally goes down, and so does its prediction error on the validation set. However,
after a while the validation error stops decreasing and actually starts to go back up.
This indicates that the model has started to overfit the training data. With early stop-
ping you just stop training as soon as the validation error reaches the minimum. It is
such a simple and efficient regularization technique that Geoffrey Hinton called it a
“beautiful free lunch”

Figure 4-20. Early stopping regularization

With Stochastic and Mini-batch Gradient Descent, the curves are
not so smooth, and it may be hard to know whether you have
reached the minimum or not. One solution is to stop only after the
validation error has been above the minimum for some time (when
you are confident that the model will not do any better), then roll
back the model parameters to the point where the validation error
was at a minimum.

Here is a basic implementation of early stopping:

from import clone
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sgd_reg = SGDRegressor(n_iter=1, warm_start=True, penalty=None,
learning_rate="constant", eta0=0.0005)

minimum_val_error = float("inf")
best_epoch = None
best_model = None
for epoch in range(1000):
sgd_reg.fit(X_train_poly_scaled, y_train) # continues where it left off
y_val_predict = sgd_reg.predict(X_val_poly_scaled)
val_error = mean_squared_error(y_val_predict, y_val)
if val_error < minimum_val_error:
minimum_val_error = val_error
best_epoch = epoch
best_model = clone(sgd_reg)

Note that with warm_start=True, when the fit() method is called, it just continues
training where it left off instead of restarting from scratch.

Logistic Regression

As we discussed in Chapter 1, some regression algorithms can be used for classifica-
tion as well (and vice versa). Logistic Regression (also called Logit Regression) is com-
monly used to estimate the probability that an instance belongs to a particular class
(e.g., what is the probability that this email is spam?). If the estimated probability is
greater than 50%, then the model predicts that the instance belongs to that class
(called the positive class, labeled “17), or else it predicts that it does not (i.e., it
belongs to the negative class, labeled “0”). This makes it a binary classifier.

Estimating Probabilities

So how does it work? Just like a Linear Regression model, a Logistic Regression
model computes a weighted sum of the input features (plus a bias term), but instead
of outputting the result directly like the Linear Regression model does, it outputs the
logistic of this result (see Equation 4-13).

Equation 4-13. Logistic Regression model estimated probability (vectorized form)
p=hyx) =0(0"-x)
The logistic—also called the logit, noted o(-)—is a sigmoid function (i.e., S-shaped)

that outputs a number between 0 and 1. It is defined as shown in Equation 4-14 and
Figure 4-21.
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Equation 4-14. Logistic function

1

o(f) = 1+ exp(-1)

-10 =5 0 5 10

Figure 4-21. Logistic function

Once the Logistic Regression model has estimated the probability p = h,(x) that an
instance x belongs to the positive class, it can make its prediction  easily (see Equa-
tion 4-15).

Equation 4-15. Logistic Regression model prediction
. [0if p<0.5,
T p>0.5.

Notice that o(t) < 0.5 when ¢ < 0, and o(#) = 0.5 when ¢ 2 0, so a Logistic Regression
model predicts 1 if 7 - x is positive, and 0 if it is negative.

Training and Cost Function

Good, now you know how a Logistic Regression model estimates probabilities and
makes predictions. But how is it trained? The objective of training is to set the param-
eter vector 6 so that the model estimates high probabilities for positive instances (y =
1) and low probabilities for negative instances (y = 0). This idea is captured by the
cost function shown in Equation 4-16 for a single training instance x.

Equation 4-16. Cost function of a single training instance

C[Flog(p)  ify=1,

g) =
) —log (1-p) if y=0.

This cost function makes sense because — log(t) grows very large when ¢ approaches
0, so the cost will be large if the model estimates a probability close to 0 for a positive
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instance, and it will also be very large if the model estimates a probability close to 1
for a negative instance. On the other hand, - log(#) is close to 0 when ¢ is close to 1, so
the cost will be close to 0 if the estimated probability is close to 0 for a negative
instance or close to 1 for a positive instance, which is precisely what we want.

The cost function over the whole training set is simply the average cost over all train-
ing instances. It can be written in a single expression (as you can verify easily), called
the log loss, shown in Equation 4-17.

Equation 4-17. Logistic Regression cost function (log loss)

0= - 3 [1l0g(5?) + (1~ y)iog(1 - )

m

The bad news is that there is no known closed-form equation to compute the value of
0 that minimizes this cost function (there is no equivalent of the Normal Equation).
But the good news is that this cost function is convex, so Gradient Descent (or any
other optimization algorithm) is guaranteed to find the global minimum (if the learn-
ing rate is not too large and you wait long enough). The partial derivatives of the cost
function with regards to the j"* model parameter 6, is given by Equation 4-18.

Equation 4-18. Logistic cost function partial derivatives

0= o))

This equation looks very much like Equation 4-5: for each instance it computes the
prediction error and multiplies it by the j feature value, and then it computes the
average over all training instances. Once you have the gradient vector containing all
the partial derivatives you can use it in the Batch Gradient Descent algorithm. That’s
it: you now know how to train a Logistic Regression model. For Stochastic GD you
would of course just take one instance at a time, and for Mini-batch GD you would
use a mini-batch at a time.

Decision Boundaries

Let’s use the iris dataset to illustrate Logistic Regression. This is a famous dataset that
contains the sepal and petal length and width of 150 iris flowers of three different
species: Iris-Setosa, Iris-Versicolor, and Iris-Virginica (see Figure 4-22).
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Figure 4-22. Flowers of three iris plant species'

Let’s try to build a classifier to detect the Iris-Virginica type based only on the petal
width feature. First let’s load the data:

>>> from sklearn import datasets

>>> iris = datasets.load_1iris()

>>> list(iris.keys())

['data', 'target_names', 'feature_names', 'target', 'DESCR']

>>> X = iris["data"][:, 3:] # petal width

>>> y = (iris["target"] == 2).astype(np.int) # 1 if Iris-Virginica, else 0

Now let’s train a Logistic Regression model:

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression()
log_reg.fit(X, y)

Let’s look at the model’s estimated probabilities for flowers with petal widths varying
from 0 to 3 cm (Figure 4-23):

X_new = np.linspace(0, 3, 1000).reshape(-1, 1)

y_proba = log_reg.predict_proba(X_new)

plt.plot(X_new, y_proba[:, 1], "g-", label="Iris-Virginica")
plt.plot(X_new, y _proba[:, 0], "b--", label="Not Iris-Virginica")
# + more Matplotlib code to make the image look pretty

16 Photos reproduced from the corresponding Wikipedia pages. Iris-Virginica photo by Frank Mayfield (Crea-
tive Commons BY-SA 2.0), Iris-Versicolor photo by D. Gordon E. Robertson (Creative Commons BY-SA 3.0),
and Iris-Setosa photo is public domain.
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Figure 4-23. Estimated probabilities and decision boundary

The petal width of Iris-Virginica flowers (represented by triangles) ranges from 1.4
cm to 2.5 cm, while the other iris flowers (represented by squares) generally have a
smaller petal width, ranging from 0.1 cm to 1.8 cm. Notice that there is a bit of over-
lap. Above about 2 cm the classifier is highly confident that the flower is an Iris-
Virginica (it outputs a high probability to that class), while below 1 c¢m it is highly
confident that it is not an Iris-Virginica (high probability for the “Not Iris-Virginica”
class). In between these extremes, the classifier is unsure. However, if you ask it to
predict the class (using the predict() method rather than the predict_proba()
method), it will return whichever class is the most likely. Therefore, there is a decision
boundary at around 1.6 cm where both probabilities are equal to 50%: if the petal
width is higher than 1.6 cm, the classifier will predict that the flower is an Iris-
Virginica, or else it will predict that it is not (even if it is not very confident):

>>> log_reg.predict([[1.7], [1.5]])
array([1, o])

Figure 4-24 shows the same dataset but this time displaying two features: petal width
and length. Once trained, the Logistic Regression classifier can estimate the probabil-
ity that a new flower is an Iris-Virginica based on these two features. The dashed line
represents the points where the model estimates a 50% probability: this is the model’s
decision boundary. Note that it is a linear boundary."” Each parallel line represents the
points where the model outputs a specific probability, from 15% (bottom left) to 90%
(top right). All the flowers beyond the top-right line have an over 90% chance of
being Iris-Virginica according to the model.

17 It is the the set of points x such that 6y + 6,x; + 6,x, = 0, which defines a straight line.
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Figure 4-24. Linear decision boundary

Just like the other linear models, Logistic Regression models can be regularized using
£, or €, penalties. Scitkit-Learn actually adds an €, penalty by default.

The hyperparameter controlling the regularization strength of a
Scikit-Learn LogisticRegression model is not alpha (as in other
linear models), but its inverse: C. The higher the value of C, the less
the model is regularized.

Softmax Regression

The Logistic Regression model can be generalized to support multiple classes directly,
without having to train and combine multiple binary classifiers (as discussed in
Chapter 3). This is called Softmax Regression, or Multinomial Logistic Regression.

The idea is quite simple: when given an instance x, the Softmax Regression model
first computes a score s(x) for each class k, then estimates the probability of each
class by applying the softmax function (also called the normalized exponential) to the
scores. The equation to compute s,(x) should look familiar, as it is just like the equa-
tion for Linear Regression prediction (see Equation 4-19).

Equation 4-19. Softmax score for class k
s(x) = GkT - X

Note that each class has its own dedicated parameter vector 8,. All these vectors are
typically stored as rows in a parameter matrix ©.

Once you have computed the score of every class for the instance x, you can estimate
the probability p; that the instance belongs to class k by running the scores through
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the softmax function (Equation 4-20): it computes the exponential of every score,
then normalizes them (dividing by the sum of all the exponentials).

Equation 4-20. Softmax function

~ €xXp (Sk(x))
b= 0600); =
Zj: | €Xp (sj(x))

 Kis the number of classes.
« §(x) is a vector containing the scores of each class for the instance x.

o 0(s(x)) is the estimated probability that the instance x belongs to class k given
the scores of each class for that instance.

Just like the Logistic Regression classifier, the Softmax Regression classifier predicts
the class with the highest estimated probability (which is simply the class with the
highest score), as shown in Equation 4-21.

Equation 4-21. Softmax Regression classifier prediction

y = argmax o(s(x)), = argmax sp(x) = argmax (QkT‘x)
k k k

« The argmax operator returns the value of a variable that maximizes a function. In
this equation, it returns the value of k that maximizes the estimated probability

o(s(x));.

The Softmax Regression classifier predicts only one class at a time
(i.e., it is multiclass, not multioutput) so it should be used only with
mutually exclusive classes such as different types of plants. You
cannot use it to recognize multiple people in one picture.

Now that you know how the model estimates probabilities and makes predictions,
let’s take a look at training. The objective is to have a model that estimates a high
probability for the target class (and consequently a low probability for the other
classes). Minimizing the cost function shown in Equation 4-22, called the cross
entropy, should lead to this objective because it penalizes the model when it estimates
a low probability for a target class. Cross entropy is frequently used to measure how
well a set of estimated class probabilities match the target classes (we will use it again
several times in the following chapters).
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Equation 4-22. Cross entropy cost function

L& $ i (20
J(©) = _Wi;k;yk log (Pk>

. yg) is equal to 1 if the target class for the i instance is k; otherwise, it is equal to
0.

Notice that when there are just two classes (K = 2), this cost function is equivalent to
the Logistic Regression’s cost function (log loss; see Equation 4-17).

Cross Entropy

Cross entropy originated from information theory. Suppose you want to efficiently
transmit information about the weather every day. If there are eight options (sunny,
rainy, etc.), you could encode each option using 3 bits since 2° = 8. However, if you
think it will be sunny almost every day, it would be much more efficient to code
“sunny” on just one bit (0) and the other seven options on 4 bits (starting with a 1).
Cross entropy measures the average number of bits you actually send per option. If
your assumption about the weather is perfect, cross entropy will just be equal to the
entropy of the weather itself (i.e., its intrinsic unpredictability). But if your assump-
tions are wrong (e.g., if it rains often), cross entropy will be greater by an amount

called the Kullback-Leibler divergence.

The cross entropy between two probability distributions p and q is defined as
H(p,q) = - X, p(x) log q(x) (at least when the distributions are discrete).

The gradient vector of this cost function with regards to 0, is given by Equation 4-23:

Equation 4-23. Cross entropy gradient vector for class k
Vo J©) =L T (- )"
0, m 2 Pk~ Yk

Now you can compute the gradient vector for every class, then use Gradient Descent
(or any other optimization algorithm) to find the parameter matrix © that minimizes
the cost function.

Let’s use Softmax Regression to classify the iris flowers into all three classes. Scikit-
Learn’s LogisticRegression uses one-versus-all by default when you train it on more
than two classes, but you can set the multi_class hyperparameter to "multinomial”
to switch it to Softmax Regression instead. You must also specify a solver that sup-
ports Softmax Regression, such as the "lbfgs" solver (see Scikit-Learn’s documenta-
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tion for more details). It also applies €, regularization by default, which you can
control using the hyperparameter C.

X = iris["data"][:, (2, 3)] # petal length, petal width
y = iris["target"]

softmax_reg = LogisticRegression(multi_class="multinomial",solver="1bfgs", C=10)
softmax_reg.fit(X, y)
So the next time you find an iris with 5 cm long and 2 cm wide petals, you can ask
your model to tell you what type of iris it is, and it will answer Iris-Virginica (class 2)
with 94.2% probability (or Iris-Versicolor with 5.8% probability):

>>> softmax_reg.predict([[5, 2]])

array([2])
>>> softmax_reg.predict_proba([[5, 2]])
array([[ 6.33134078e-07, 5.75276067e-02, 9.42471760e-01]])

Figure 4-25 shows the resulting decision boundaries, represented by the background
colors. Notice that the decision boundaries between any two classes are linear. The
figure also shows the probabilities for the Iris-Versicolor class, represented by the
curved lines (e.g., the line labeled with 0.450 represents the 45% probability bound-
ary). Notice that the model can predict a class that has an estimated probability below
50%. For example, at the point where all decision boundaries meet, all classes have an
equal estimated probability of 33%.

Figure 4-25. Softmax Regression decision boundaries

Exercises

1. What Linear Regression training algorithm can you use if you have a training set
with millions of features?

2. Suppose the features in your training set have very different scales. What algo-
rithms might suffer from this, and how? What can you do about it?
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10.

11.

12.

. Can Gradient Descent get stuck in a local minimum when training a Logistic

Regression model?

. Do all Gradient Descent algorithms lead to the same model provided you let

them run long enough?

. Suppose you use Batch Gradient Descent and you plot the validation error at

every epoch. If you notice that the validation error consistently goes up, what is
likely going on? How can you fix this?

Is it a good idea to stop Mini-batch Gradient Descent immediately when the vali-
dation error goes up?

Which Gradient Descent algorithm (among those we discussed) will reach the
vicinity of the optimal solution the fastest? Which will actually converge? How
can you make the others converge as well?

. Suppose you are using Polynomial Regression. You plot the learning curves and

you notice that there is a large gap between the training error and the validation
error. What is happening? What are three ways to solve this?

. Suppose you are using Ridge Regression and you notice that the training error

and the validation error are almost equal and fairly high. Would you say that the
model suffers from high bias or high variance? Should you increase the regulari-
zation hyperparameter o or reduce it?

Why would you want to use:

+ Ridge Regression instead of Linear Regression?
« Lasso instead of Ridge Regression?

« Elastic Net instead of Lasso?

Suppose you want to classify pictures as outdoor/indoor and daytime/nighttime.
Should you implement two Logistic Regression classifiers or one Softmax Regres-
sion classifier?

Implement Batch Gradient Descent with early stopping for Softmax Regression
(without using Scikit-Learn).

Solutions to these exercises are available in Appendix A.
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CHAPTER 5
Support Vector Machines

A Support Vector Machine (SVM) is a very powerful and versatile Machine Learning
model, capable of performing linear or nonlinear classification, regression, and even
outlier detection. It is one of the most popular models in Machine Learning, and any-
one interested in Machine Learning should have it in their toolbox. SVMs are partic-
ularly well suited for classification of complex but small- or medium-sized datasets.

This chapter will explain the core concepts of SVMs, how to use them, and how they
work.

Linear SVM Classification

The fundamental idea behind SVMs is best explained with some pictures. Figure 5-1
shows part of the iris dataset that was introduced at the end of Chapter 4. The two
classes can clearly be separated easily with a straight line (they are linearly separable).
The left plot shows the decision boundaries of three possible linear classifiers. The
model whose decision boundary is represented by the dashed line is so bad that it
does not even separate the classes properly. The other two models work perfectly on
this training set, but their decision boundaries come so close to the instances that
these models will probably not perform as well on new instances. In contrast, the
solid line in the plot on the right represents the decision boundary of an SVM classi-
fier; this line not only separates the two classes but also stays as far away from the
closest training instances as possible. You can think of an SVM classifier as fitting the
widest possible street (represented by the parallel dashed lines) between the classes.
This is called large margin classification.
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Figure 5-1. Large margin classification

Notice that adding more training instances “off the street” will not affect the decision
boundary at all: it is fully determined (or “supported”) by the instances located on the
edge of the street. These instances are called the support vectors (they are circled in
Figure 5-1).

SVMs are sensitive to the feature scales, as you can see in
Figure 5-2: on the left plot, the vertical scale is much larger than the
horizontal scale, so the widest possible street is close to horizontal.
After feature scaling (e.g., using Scikit-Learn’s StandardScaler),
the decision boundary looks much better (on the right plot).

Figure 5-2. Sensitivity to feature scales

Soft Margin Classification

If we strictly impose that all instances be off the street and on the right side, this is
called hard margin classification. There are two main issues with hard margin classifi-
cation. First, it only works if the data is linearly separable, and second it is quite sensi-
tive to outliers. Figure 5-3 shows the iris dataset with just one additional outlier: on
the left, it is impossible to find a hard margin, and on the right the decision boundary
ends up very different from the one we saw in Figure 5-1 without the outlier, and it
will probably not generalize as well.
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Figure 5-3. Hard margin sensitivity to outliers

To avoid these issues it is preferable to use a more flexible model. The objective is to
find a good balance between keeping the street as large as possible and limiting the
margin violations (i.e., instances that end up in the middle of the street or even on the
wrong side). This is called soft margin classification.

In Scikit-Learn’s SVM classes, you can control this balance using the C hyperparame-
ter: a smaller C value leads to a wider street but more margin violations. Figure 5-4
shows the decision boundaries and margins of two soft margin SVM classifiers on a
nonlinearly separable dataset. On the left, using a high C value the classifier makes
fewer margin violations but ends up with a smaller margin. On the right, using a low
C value the margin is much larger, but many instances end up on the street. However,
it seems likely that the second classifier will generalize better: in fact even on this
training set it makes fewer prediction errors, since most of the margin violations are
actually on the correct side of the decision boundary.

Figure 5-4. Fewer margin violations versus large margin

If your SVM model is overfitting, you can try regularizing it by
reducing C.

The following Scikit-Learn code loads the iris dataset, scales the features, and then
trains a linear SVM model (using the LinearSVC class with C = 0.1 and the hinge loss
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function, described shortly) to detect Iris-Virginica flowers. The resulting model is
represented on the right of Figure 5-4.

import as

from import datasets

from import Pipeline

from import StandardScaler
from import LinearSVC

iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica

svm_clf = Pipeline((
("scaler", StandardScaler()),
("linear_svc", LinearSVC(C=1, loss="hinge")),

))

svm_clf.fit(X_scaled, y)
Then, as usual, you can use the model to make predictions:

>>> svm_clf.predict([[5.5, 1.7]])
array([ 1.])

Unlike Logistic Regression classifiers, SVM classifiers do not out-
put probabilities for each class.

Alternatively, you could use the SVC class, using SVC(kernel="1inear", C=1), but it
is much slower, especially with large training sets, so it is not recommended. Another
option is to use the SGDClassifier class, with SGDClassifier(loss="hinge",
alpha=1/(m*C)). This applies regular Stochastic Gradient Descent (see Chapter 4) to
train a linear SVM classifier. It does not converge as fast as the LinearSVC class, but it
can be useful to handle huge datasets that do not fit in memory (out-of-core train-
ing), or to handle online classification tasks.

The LinearSVC class regularizes the bias term, so you should center
the training set first by subtracting its mean. This is automatic if
you scale the data using the StandardScaler. Moreover, make sure
you set the loss hyperparameter to "hinge", as it is not the default
value. Finally, for better performance you should set the dual
hyperparameter to False, unless there are more features than
training instances (we will discuss duality later in the chapter).
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Nonlinear SVM Classification

Although linear SVM classifiers are efficient and work surprisingly well in many
cases, many datasets are not even close to being linearly separable. One approach to
handling nonlinear datasets is to add more features, such as polynomial features (as
you did in Chapter 4); in some cases this can result in a linearly separable dataset.
Consider the left plot in Figure 5-5: it represents a simple dataset with just one feature
x;. This dataset is not linearly separable, as you can see. But if you add a second fea-
ture x, = (x,)? the resulting 2D dataset is perfectly linearly separable.
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Figure 5-5. Adding features to make a dataset linearly separable

To implement this idea using Scikit-Learn, you can create a Pipeline containing a
PolynomialFeatures transformer (discussed in “Polynomial Regression” on page
121), followed by a StandardScaler and a LinearSVC. Let’s test this on the moons
dataset (see Figure 5-6):

from import make_moons
from import Pipeline
from import PolynomialFeatures

polynomial_svm_clf = Pipeline((
("poly_features", PolynomialFeatures(degree=3)),
("scaler", StandardScaler()),
("svm_clf", LinearSVC(C=10, loss="hinge"))
)

polynomial_svm_clf.fit(X, y)
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Figure 5-6. Linear SVM classifier using polynomial features

Polynomial Kernel

Adding polynomial features is simple to implement and can work great with all sorts
of Machine Learning algorithms (not just SVMs), but at a low polynomial degree it
cannot deal with very complex datasets, and with a high polynomial degree it creates
a huge number of features, making the model too slow.

Fortunately, when using SVMs you can apply an almost miraculous mathematical
technique called the kernel trick (it is explained in a moment). It makes it possible to
get the same result as if you added many polynomial features, even with very high-
degree polynomials, without actually having to add them. So there is no combinato-
rial explosion of the number of features since you don’t actually add any features. This
trick is implemented by the SVC class. Let’s test it on the moons dataset:

from import SVC
poly_kernel_svm_clf = Pipeline((
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5))
)
poly_kernel_svm_clf.fit(X, y)

This code trains an SVM classifier using a 3"-degree polynomial kernel. It is repre-
sented on the left of Figure 5-7. On the right is another SVM classifier using a 10™-
degree polynomial kernel. Obviously, if your model is overfitting, you might want to
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reduce the polynomial degree. Conversely, if it is underfitting, you can try increasing
it. The hyperparameter coef0 controls how much the model is influenced by high-
degree polynomials versus low-degree polynomials.

Figure 5-7. SVM classifiers with a polynomial kernel

A common approach to find the right hyperparameter values is to
use grid search (see Chapter 2). It is often faster to first do a very
coarse grid search, then a finer grid search around the best values
found. Having a good sense of what each hyperparameter actually
does can also help you search in the right part of the hyperparame-
ter space.

Adding Similarity Features

Another technique to tackle nonlinear problems is to add features computed using a
similarity function that measures how much each instance resembles a particular
landmark. For example, let’s take the one-dimensional dataset discussed earlier and
add two landmarks to it at x; = -2 and x, = 1 (see the left plot in Figure 5-8). Next,
let’s define the similarity function to be the Gaussian Radial Basis Function (RBF)
with y = 0.3 (see Equation 5-1).

Equation 5-1. Gaussian RBF

$y(x,0) = exp (-l x-¢ |

It is a bell-shaped function varying from 0 (very far away from the landmark) to 1 (at
the landmark). Now we are ready to compute the new features. For example, let’s look
at the instance x, = -1: it is located at a distance of 1 from the first landmark, and 2
from the second landmark. Therefore its new features are x, = exp (-0.3 x 1) = 0.74
and x; = exp (-0.3 x 2?) = 0.30. The plot on the right of Figure 5-8 shows the trans-
formed dataset (dropping the original features). As you can see, it is now linearly
separable.
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Figure 5-8. Similarity features using the Gaussian RBF

You may wonder how to select the landmarks. The simplest approach is to create a
landmark at the location of each and every instance in the dataset. This creates many
dimensions and thus increases the chances that the transformed training set will be
linearly separable. The downside is that a training set with m instances and » features
gets transformed into a training set with m instances and m features (assuming you
drop the original features). If your training set is very large, you end up with an
equally large number of features.

Gaussian RBF Kernel

Just like the polynomial features method, the similarity features method can be useful
with any Machine Learning algorithm, but it may be computationally expensive to
compute all the additional features, especially on large training sets. However, once
again the kernel trick does its SVM magic: it makes it possible to obtain a similar
result as if you had added many similarity features, without actually having to add
them. Let’s try the Gaussian RBF kernel using the SVC class:

rbf_kernel_svm_clf = Pipeline((
("scaler", StandardScaler()),
("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001))
rbf_lze)zrnel_svm_clf.fit(X, y)
This model is represented on the bottom left of Figure 5-9. The other plots show
models trained with different values of hyperparameters gamma (y) and C. Increasing
gamma makes the bell-shape curve narrower (see the left plot of Figure 5-8), and as a
result each instances range of influence is smaller: the decision boundary ends up
being more irregular, wiggling around individual instances. Conversely, a small gamma
value makes the bell-shaped curve wider, so instances have a larger range of influ-
ence, and the decision boundary ends up smoother. So y acts like a regularization
hyperparameter: if your model is overfitting, you should reduce it, and if it is under-
fitting, you should increase it (similar to the C hyperparameter).
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Figure 5-9. SVM classifiers using an RBF kernel

Other kernels exist but are used much more rarely. For example, some kernels are
specialized for specific data structures. String kernels are sometimes used when classi-
fying text documents or DNA sequences (e.g., using the string subsequence kernel or
kernels based on the Levenshtein distance).

With so many kernels to choose from, how can you decide which
one to use? As a rule of thumb, you should always try the linear
kernel first (remember that LinearSVC is much faster than SVC(ker
nel="1linear")), especially if the training set is very large or if it
has plenty of features. If the training set is not too large, you should
try the Gaussian RBF kernel as well; it works well in most cases.
Then if you have spare time and computing power, you can also
experiment with a few other kernels using cross-validation and grid
search, especially if there are kernels specialized for your training
set’s data structure.

Computational Complexity

The LinearSVC class is based on the liblinear library, which implements an optimized
algorithm for linear SVMs.! It does not support the kernel trick, but it scales almost

1 “A Dual Coordinate Descent Method for Large-scale Linear SVM,” Lin et al. (2008).
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linearly with the number of training instances and the number of features: its training
time complexity is roughly O(m x n).

The algorithm takes longer if you require a very high precision. This is controlled by
the tolerance hyperparameter € (called tol in Scikit-Learn). In most classification
tasks, the default tolerance is fine.

The SVC class is based on the libsvm library, which implements an algorithm that sup-
ports the kernel trick.? The training time complexity is usually between O(m?* x n)
and O(m® x n). Unfortunately, this means that it gets dreadfully slow when the num-
ber of training instances gets large (e.g., hundreds of thousands of instances). This
algorithm is perfect for complex but small or medium training sets. However, it scales
well with the number of features, especially with sparse features (i.e., when each
instance has few nonzero features). In this case, the algorithm scales roughly with the
average number of nonzero features per instance. Table 5-1 compares Scikit-Learn’s
SVM classification classes.

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

Class Time complexity Out-of-core support Scaling required  Kernel trick
Linearsvc 0(m x n) No Yes No
SGDClassifier O(mxn) Yes Yes No
SVC 0(m*x n) to O(m*x n) No Yes Yes

SVM Regression

As we mentioned earlier, the SVM algorithm is quite versatile: not only does it sup-
port linear and nonlinear classification, but it also supports linear and nonlinear
regression. The trick is to reverse the objective: instead of trying to fit the largest pos-
sible street between two classes while limiting margin violations, SVM Regression
tries to fit as many instances as possible on the street while limiting margin violations
(i.e., instances off the street). The width of the street is controlled by a hyperparame-
ter e. Figure 5-10 shows two linear SVM Regression models trained on some random
linear data, one with a large margin (€ = 1.5) and the other with a small margin (¢ =
0.5).

2 “Sequential Minimal Optimization (SMO),” J. Platt (1998).
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Figure 5-10. SVM Regression

Adding more training instances within the margin does not affect the model’s predic-
tions; thus, the model is said to be e-insensitive.

You can use Scikit-Learn’s LinearSVR class to perform linear SVM Regression. The
following code produces the model represented on the left of Figure 5-10 (the train-
ing data should be scaled and centered first):

from import LinearSVR

svm_reg = LinearSVR(epsilon=1.5)

svm_reg. fit(X, y)
To tackle nonlinear regression tasks, you can use a kernelized SVM model. For exam-
ple, Figure 5-11 shows SVM Regression on a random quadratic training set, using a
2m-degree polynomial kernel. There is little regularization on the left plot (i.e., a large
C value), and much more regularization on the right plot (i.e., a small C value).

Figure 5-11. SVM regression using a 2"-degree polynomial kernel
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The following code produces the model represented on the left of Figure 5-11 using
Scikit-Learn’s SVR class (which supports the kernel trick). The SVR class is the regres-
sion equivalent of the SVC class, and the LinearSVR class is the regression equivalent
of the LinearSVC class. The LinearSVR class scales linearly with the size of the train-
ing set (just like the LinearSVC class), while the SVR class gets much too slow when
the training set grows large (just like the SVC class).

from import SVR

svm_poly_reg = SVR(kernel="poly", degree=2, C=100, epsilon=0.1)
svm_poly_reg.fit(X, y)

SVMs can also be used for outlier detection; see Scikit-Learn’s doc-
umentation for more details.

Under the Hood

This section explains how SVMs make predictions and how their training algorithms
work, starting with linear SVM classifiers. You can safely skip it and go straight to the
exercises at the end of this chapter if you are just getting started with Machine Learn-
ing, and come back later when you want to get a deeper understanding of SVMs.

First, a word about notations: in Chapter 4 we used the convention of putting all the
model parameters in one vector 6, including the bias term 6, and the input feature
weights 0, to 0,, and adding a bias input x, = 1 to all instances. In this chapter, we will
use a different convention, which is more convenient (and more common) when you
are dealing with SVMs: the bias term will be called b and the feature weights vector
will be called w. No bias feature will be added to the input feature vectors.

Decision Function and Predictions

The linear SVM classifier model predicts the class of a new instance x by simply com-
puting the decision function w' - x + b = w, x, + --- + w, x,, + b: if the result is posi-
tive, the predicted class y is the positive class (1), or else it is the negative class (0); see
Equation 5-2.

Equation 5-2. Linear SVM classifier prediction

ot wx+b<0,

lifw -x+b>0
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Figure 5-12 shows the decision function that corresponds to the model on the right of
Figure 5-4: it is a two-dimensional plane since this dataset has two features (petal
width and petal length). The decision boundary is the set of points where the decision
function is equal to 0: it is the intersection of two planes, which is a straight line (rep-
resented by the thick solid line).?

Figure 5-12. Decision function for the iris dataset

The dashed lines represent the points where the decision function is equal to 1 or -1:
they are parallel and at equal distance to the decision boundary, forming a margin
around it. Training a linear SVM classifier means finding the value of w and b that
make this margin as wide as possible while avoiding margin violations (hard margin)
or limiting them (soft margin).

Training Objective

Consider the slope of the decision function: it is equal to the norm of the weight vec-
tor, || w ||. If we divide this slope by 2, the points where the decision function is equal
to 1 are going to be twice as far away from the decision boundary. In other words,
dividing the slope by 2 will multiply the margin by 2. Perhaps this is easier to visual-
ize in 2D in Figure 5-13. The smaller the weight vector w, the larger the margin.

3 More generally, when there are n features, the decision function is an n-dimensional hyperplane, and the deci-
sion boundary is an (n - 1)-dimensional hyperplane.
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Figure 5-13. A smaller weight vector results in a larger margin

So we want to minimize || w || to get a large margin. However, if we also want to avoid
any margin violation (hard margin), then we need the decision function to be greater
than 1 for all positive training instances, and lower than -1 for negative training
instances. If we define ¥ = -1 for negative instances (if y” = 0) and #” = 1 for positive
instances (if y” = 1), then we can express this constraint as t?(w” - x” + b) > 1 for all
instances.

We can therefore express the hard margin linear SVM classifier objective as the con-
strained optimization problem in Equation 5-3.

Equation 5-3. Hard margin linear SVM classifier objective

L 1. T
minimize W -W
w,b 2

subject to t(i)(wT-x(i) + b) 21 fori=12,--,m

P L 1
We are minimizing w" - w, which is equal to 5| w [|%, rather than

minimizing || w ||. This is because it will give the same result (since
the values of w and b that minimize a value also minimize half of

its square), but 3| w [[* has a nice and simple derivative (it is just

w) while || w || is not differentiable at w = 0. Optimization algo-
rithms work much better on differentiable functions.

To get the soft margin objective, we need to introduce a slack variable {? > 0 for each
instance:* { measures how much the i instance is allowed to violate the margin. We
now have two conflicting objectives: making the slack variables as small as possible to

L L1 . .
reduce the margin violations, and making sw" - w as small as possible to increase the

margin. This is where the C hyperparameter comes in: it allows us to define the trade-

4 Zeta (0) is the 8t letter of the Greek alphabet.
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off between these two objectives. This gives us the constrained optimization problem
in Equation 5-4.

Equation 5-4. Soft margin linear SVM classifier objective

m B
minimize 2w’ -w+C > (@
w,b,( 2 i<

subject to t(i)(wT-x(i) + b) >1- ((i) and ((i) >0 fori=12,,m

Quadratic Programming

The hard margin and soft margin problems are both convex quadratic optimization
problems with linear constraints. Such problems are known as Quadratic Program-
ming (QP) problems. Many oft-the-shelf solvers are available to solve QP problems
using a variety of techniques that are outside the scope of this book.” The general
problem formulation is given by Equation 5-5.

Equation 5-5. Quadratic Programming problem

Minimize lpT-H-p + f.p
p 2
subject to A-p<b

p isanmn P—dimensional vector (n = number of parameters),

H is an n_xn_ matrix
p p ’

where isan n P-dimensional vector,

isan n_xn N matrix (nc = number of constraints),

o » =

isan n C—dimensional vector.

Note that the expression A - p < b actually defines n, constraints: p’ - a® < b® for i =
1,2, -, n, where a” is the vector containing the elements of the i row of A and b is
the i element of b.

You can easily verify that if you set the QP parameters in the following way, you get
the hard margin linear SVM classifier objective:

 n,=n+ 1, where n is the number of features (the +1 is for the bias term).

5 To learn more about Quadratic Programming, you can start by reading Stephen Boyd and Lieven Vanden-
berghe, Convex Optimization (Cambridge, UK: Cambridge University Press, 2004) or watch Richard Brown’s
series of video lectures.
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o n.=m, where m is the number of training instances.

 H is the n, x n, identity matrix, except with a zero in the top-left cell (to ignore
the bias term).

« f=0, an n,-dimensional vector full of Os.
« b =1, an n.-dimensional vector full of 1s.

o a¥ = -t x0 where X7 is equal to x” with an extra bias feature %, = 1.

So one way to train a hard margin linear SVM classifier is just to use an off-the-shelf
QP solver by passing it the preceding parameters. The resulting vector p will contain
the bias term b = p, and the feature weights w; = p, for i = 1, 2, ---, m. Similarly, you
can use a QP solver to solve the soft margin problem (see the exercises at the end of
the chapter).

However, to use the kernel trick we are going to look at a different constrained opti-
mization problem.

The Dual Problem

Given a constrained optimization problem, known as the primal problem, it is possi-
ble to express a different but closely related problem, called its dual problem. The sol-
ution to the dual problem typically gives a lower bound to the solution of the primal
problem, but under some conditions it can even have the same solutions as the pri-
mal problem. Luckily, the SVM problem happens to meet these conditions,® so you
can choose to solve the primal problem or the dual problem; both will have the same
solution. Equation 5-6 shows the dual form of the linear SVM objective (if you are
interested in knowing how to derive the dual problem from the primal problem, see
Appendix C).

Equation 5-6. Dual form of the linear SVM objective

mll’lll’an

§ IROFCHOROEISNG R O

”MS

subject to aD>0 fori=1,2m

6 The objective function is convex, and the inequality constraints are continuously differentiable and convex
functions.
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Once you find the vector & that minimizes this equation (using a QP solver), you can

compute w and b that minimize the primal problem by using Equation 5-7.
Equation 5-7. From the dual solution to the primal solution

m .
W= Y aWig®
i=1

The dual problem is faster to solve than the primal when the number of training
instances is smaller than the number of features. More importantly, it makes the ker-
nel trick possible, while the primal does not. So what is this kernel trick anyway?

Kernelized SVM

Suppose you want to apply a 2"-degree polynomial transformation to a two-
dimensional training set (such as the moons training set), then train a linear SVM
classifier on the transformed training set. Equation 5-8 shows the 2"-degree polyno-
mial mapping function ¢ that you want to apply.

Equation 5-8. Second-degree polynomial mapping
*1
%

Notice that the transformed vector is three-dimensional instead of two-dimensional.
Now let’s look at what happens to a couple of two-dimensional vectors, a and b, if we
apply this 2"-degree polynomial mapping and then compute the dot product of the
transformed vectors (See Equation 5-9).

2
X1

= \/ixlx2

2
4)

p(x)=¢
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Equation 5-9. Kernel trick for a 2"-degree polynomial mapping

2 \T 2
a, b,
p@"-¢b) = |V2a,| |V2biby| = a’b” +2a,bya,b, + a,°by)
a22 b22

a

(arb, + “2b2)2 = ((

a,

How about that? The dot product of the transformed vectors is equal to the square of
the dot product of the original vectors: ¢(a)” - ¢(b) = (a’ - b)%

Now here is the key insight: if you apply the transformation ¢ to all training instan-
ces, then the dual problem (see Equation 5-6) will contain the dot product ¢(x?)T -
¢(x?). But if ¢ is the 2"-degree polynomial transformation defined in Equation 5-8,

T A\ 2
then you can replace this dot product of transformed vectors simply by (x(l) : X(J)) .

So you don't actually need to transform the training instances at all: just replace the
dot product by its square in Equation 5-6. The result will be strictly the same as if you
went through the trouble of actually transforming the training set then fitting a linear
SVM algorithm, but this trick makes the whole process much more computationally
efficient. This is the essence of the kernel trick.

The function K(a, b) = (a” - b)? is called a 2"d-degree polynomial kernel. In Machine
Learning, a kernel is a function capable of computing the dot product ¢(a)” - ¢(b)
based only on the original vectors a and b, without having to compute (or even to
know about) the transformation ¢. Equation 5-10 lists some of the most commonly
used kernels.

Equation 5-10. Common kernels

Linear: K(a,b) = al.b
Polynomial:  K(a,b) = (yaT -b+ r)d
Gaussian RBF:  K(a,b) = exp (—y|| a-b ||2)

Sigmoid:  K(a,b) = tanh (yaT -b+ r)
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Mercer's Theorem

According to Mercer’s theorem, if a function K(a, b) respects a few mathematical con-
ditions called Mercer’s conditions (K must be continuous, symmetric in its arguments
so K(a, b) = K(b, a), etc.), then there exists a function ¢ that maps a and b into
another space (possibly with much higher dimensions) such that K(a, b) = ¢(a)” -
¢(b). So you can use K as a kernel since you know ¢ exists, even if you don’t know
what ¢ is. In the case of the Gaussian RBF kernel, it can be shown that ¢ actually
maps each training instance to an infinite-dimensional space, so it’s a good thing you
don’t need to actually perform the mapping!

Note that some frequently used kernels (such as the Sigmoid kernel) don’t respect all
of Mercer’s conditions, yet they generally work well in practice.

There is still one loose end we must tie. Equation 5-7 shows how to go from the dual
solution to the primal solution in the case of a linear SVM classifier, but if you apply
the kernel trick you end up with equations that include ¢(x®). In fact, w must have
the same number of dimensions as ¢(x®), which may be huge or even infinite, so you
can’'t compute it. But how can you make predictions without knowing w? Well, the
good news is that you can plug in the formula for w from Equation 5-7 into the deci-
sion function for a new instance x™, and you get an equation with only dot products
between input vectors. This makes it possible to use the kernel trick, once again
(Equation 5-11).

Equation 5-11. Making predictions with a kernelized SVM

T

ha, é(¢(x(n))) _ WT-qs(x(”)) b= é‘:l &(i)t(i)¢(x(i)) .¢(x(n)) +b

= § 00 g i

i=1

I
™Mz
>

O (x,x7) + b

1
>0

=

1
al

Note that since a # 0 only for support vectors, making predictions involves comput-
ing the dot product of the new input vector x™ with only the support vectors, not all

the training instances. Of course, you also need to compute the bias term b, using the
same trick (Equation 5-12).
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Equation 5-12. Computing the bias term using the kernel trick
T

5y 0g(x)| . p(x?)

f-3 B et o)=L 5 oo

N

i=1 i=1
PO a0

If you are starting to get a headache, it’s perfectly normal: it's an unfortunate side
effects of the kernel trick.

Online SVMs

Before concluding this chapter, let’s take a quick look at online SVM classifiers (recall
that online learning means learning incrementally, typically as new instances arrive).

For linear SVM classifiers, one method is to use Gradient Descent (e.g., using
SGDClassifier) to minimize the cost function in Equation 5-13, which is derived

from the primal problem. Unfortunately it converges much more slowly than the
methods based on QP.

Equation 5-13. Linear SVM classifier cost function

Jwb) = gwow €Y mar{o1- 0w x0 1)

The first sum in the cost function will push the model to have a small weight vector
w, leading to a larger margin. The second sum computes the total of all margin viola-
tions. An instance’s margin violation is equal to 0 if it is located off the street and on
the correct side, or else it is proportional to the distance to the correct side of the
street. Minimizing this term ensures that the model makes the margin violations as
small and as few as possible

Hinge Loss

The function max(0, 1 - t) is called the hinge loss function (represented below). It is
equal to 0 when ¢ > 1. Its derivative (slope) is equal to -1 if t < 1 and 0 if £ > 1. It is not
differentiable at t = 1, but just like for Lasso Regression (see “Lasso Regression” on
page 130) you can still use Gradient Descent using any subderivative at t = 0 (i.e., any
value between -1 and 0).
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It is also possible to implement online kernelized SVMs—for example, using “Incre-
mental and Decremental SVM Learning™ or “Fast Kernel Classifiers with Online and
Active Learning”® However, these are implemented in Matlab and C++. For large-
scale nonlinear problems, you may want to consider using neural networks instead
(see Part IT).

Exercises

1. What is the fundamental idea behind Support Vector Machines?
2. What is a support vector?

3.
4

Why is it important to scale the inputs when using SVMs?

. Can an SVM classifier output a confidence score when it classifies an instance?

What about a probability?

Should you use the primal or the dual form of the SVM problem to train a model
on a training set with millions of instances and hundreds of features?

Say you trained an SVM classifier with an RBF kernel. It seems to underfit the
training set: should you increase or decrease y (gamma)? What about C?

How should you set the QP parameters (H, f, A, and b) to solve the soft margin
linear SVM classifier problem using an off-the-shelf QP solver?

. Train a LinearSVC on a linearly separable dataset. Then train an SVC and a

SGDClassifier on the same dataset. See if you can get them to produce roughly
the same model.

. Train an SVM classifier on the MNIST dataset. Since SVM classifiers are binary

classifiers, you will need to use one-versus-all to classify all 10 digits. You may

7 “Incremental and Decremental Support Vector Machine Learning,” G. Cauwenberghs, T. Poggio (2001).

8 “Fast Kernel Classifiers with Online and Active Learning,“ A. Bordes, S. Ertekin, J. Weston, L. Bottou (2005).
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want to tune the hyperparameters using small validation sets to speed up the pro-
cess. What accuracy can you reach?

10. Train an SVM regressor on the California housing dataset.

Solutions to these exercises are available in Appendix A.
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CHAPTER 6
Decision Trees

Like SVMs, Decision Trees are versatile Machine Learning algorithms that can per-
form both classification and regression tasks, and even multioutput tasks. They are
very powerful algorithms, capable of fitting complex datasets. For example, in Chap-
ter 2 you trained a DecisionTreeRegressor model on the California housing dataset,
fitting it perfectly (actually overfitting it).

Decision Trees are also the fundamental components of Random Forests (see Chap-
ter 7), which are among the most powerful Machine Learning algorithms available
today.

In this chapter we will start by discussing how to train, visualize, and make predic-
tions with Decision Trees. Then we will go through the CART training algorithm
used by Scikit-Learn, and we will discuss how to regularize trees and use them for
regression tasks. Finally, we will discuss some of the limitations of Decision Trees.

Training and Visualizing a Decision Tree

To understand Decision Trees, let’s just build one and take a look at how it makes pre-
dictions. The following code trains a DecisionTreeClassifier on the iris dataset
(see Chapter 4):

from import load_iris
from import DecisionTreeClassifier

iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X, y)
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You can visualize the trained Decision Tree by first using the export_graphviz()
method to output a graph definition file called iris_tree.dot:

from import export_graphviz

export_graphviz(
tree_clf,
out_file=image_path("iris_tree.dot"),
feature_names=iris.feature_names[2:],
class_names=1iris.target_names,
rounded=True,
filled=True

)

Then you can convert this .dot file to a variety of formats such as PDF or PNG using
the dot command-line tool from the graphviz package.' This command line converts
the .dot file to a .png image file:

$ dot -Tpng iris_tree.dot -o iris_tree.png

Your first decision tree looks like Figure 6-1.

Figure 6-1. Iris Decision Tree

1 Graphviz is an open source graph visualization software package, available at http://www.graphviz.org/.
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Making Predictions

Let’s see how the tree represented in Figure 6-1 makes predictions. Suppose you find
an iris flower and you want to classify it. You start at the root node (depth 0, at the
top): this node asks whether the flower’s petal length is smaller than 2.45 cm. If it is,
then you move down to the root’s left child node (depth 1, left). In this case, it is a leaf
node (i.e., it does not have any children nodes), so it does not ask any questions: you
can simply look at the predicted class for that node and the Decision Tree predicts
that your flower is an Iris-Setosa (class=setosa).

Now suppose you find another flower, but this time the petal length is greater than
2.45 cm. You must move down to the root’s right child node (depth 1, right), which is
not a leaf node, so it asks another question: is the petal width smaller than 1.75 cm? If
it is, then your flower is most likely an Iris-Versicolor (depth 2, left). If not, it is likely
an Iris-Virginica (depth 2, right). It’s really that simple.

One of the many qualities of Decision Trees is that they require
very little data preparation. In particular, they don’t require feature
scaling or centering at all.

A node’s samples attribute counts how many training instances it applies to. For
example, 100 training instances have a petal length greater than 2.45 cm (depth 1,
right), among which 54 have a petal width smaller than 1.75 cm (depth 2, left). A
node’s value attribute tells you how many training instances of each class this node
applies to: for example, the bottom-right node applies to 0 Iris-Setosa, 1 Iris-
Versicolor, and 45 Iris-Virginica. Finally, a node’s gini attribute measures its impur-
ity: a node is “pure” (gini=0) if all training instances it applies to belong to the same
class. For example, since the depth-1 left node applies only to Iris-Setosa training
instances, it is pure and its gini score is 0. Equation 6-1 shows how the training algo-
rithm computes the gini score G; of the i node. For example, the depth-2 left node
has a gini score equal to 1 — (0/54)* - (49/54)* - (5/54)* = 0.168. Another impurity
measure is discussed shortly.

Equation 6-1. Gini impurity

n
2
G=1- kglpi,k

o P« is the ratio of class k instances among the training instances in the i node.
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Scikit-Learn uses the CART algorithm, which produces only binary
trees: nonleaf nodes always have two children (i.e., questions only
have yes/no answers). However, other algorithms such as ID3 can
produce Decision Trees with nodes that have more than two chil-
dren.

Figure 6-2 shows this Decision Tree’s decision boundaries. The thick vertical line rep-
resents the decision boundary of the root node (depth 0): petal length = 2.45 cm.
Since the left area is pure (only Iris-Setosa), it cannot be split any further. However,
the right area is impure, so the depth-1 right node splits it at petal width = 1.75 cm
(represented by the dashed line). Since max_depth was set to 2, the Decision Tree
stops right there. However, if you set max_depth to 3, then the two depth-2 nodes
would each add another decision boundary (represented by the dotted lines).

Figure 6-2. Decision Tree decision boundaries

Model Interpretation: White Box Versus Black Box

As you can see Decision Trees are fairly intuitive and their decisions are easy to inter-
pret. Such models are often called white box models. In contrast, as we will see, Ran-
dom Forests or neural networks are generally considered black box models. They
make great predictions, and you can easily check the calculations that they performed
to make these predictions; nevertheless, it is usually hard to explain in simple terms
why the predictions were made. For example, if a neural network says that a particu-
lar person appears on a picture, it is hard to know what actually contributed to this
prediction: did the model recognize that person’s eyes? Her mouth? Her nose? Her
shoes? Or even the couch that she was sitting on? Conversely, Decision Trees provide
nice and simple classification rules that can even be applied manually if need be (e.g.,
for flower classification).
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Estimating Class Probabilities

A Decision Tree can also estimate the probability that an instance belongs to a partic-
ular class k: first it traverses the tree to find the leaf node for this instance, and then it
returns the ratio of training instances of class k in this node. For example, suppose
you have found a flower whose petals are 5 cm long and 1.5 cm wide. The corre-
sponding leaf node is the depth-2 left node, so the Decision Tree should output the
following probabilities: 0% for Iris-Setosa (0/54), 90.7% for Iris-Versicolor (49/54),
and 9.3% for Iris-Virginica (5/54). And of course if you ask it to predict the class, it
should output Iris-Versicolor (class 1) since it has the highest probability. Let’s check
this:

>>> tree_clf.predict_proba([[5, 1.5]1])

array([[ ©. , 0.90740741, 0.09259259]1)

>>> tree_clf.predict([[5, 1.5]])
array([1])

Perfect! Notice that the estimated probabilities would be identical anywhere else in
the bottom-right rectangle of Figure 6-2—for example, if the petals were 6 cm long
and 1.5 cm wide (even though it seems obvious that it would most likely be an Iris-
Virginica in this case).

The CART Training Algorithm

Scikit-Learn uses the Classification And Regression Tree (CART) algorithm to train
Decision Trees (also called “growing” trees). The idea is really quite simple: the algo-
rithm first splits the training set in two subsets using a single feature k and a thres-
hold t, (e.g., “petal length < 2.45 cm”). How does it choose k and t,? It searches for the
pair (k, t,) that produces the purest subsets (weighted by their size). The cost function
that the algorithm tries to minimize is given by Equation 6-2.

Equation 6-2. CART cost function for classification

m m.
_ left right
J(ks ti) = — =Giee + — - Giright

Gleft/right measures the impurity of the left/right subset,

where
Miefi/right 1S the number of instances in the left/right subset.

Once it has successfully split the training set in two, it splits the subsets using the
same logic, then the sub-subsets and so on, recursively. It stops recursing once it rea-
ches the maximum depth (defined by the max_depth hyperparameter), or if it cannot
find a split that will reduce impurity. A few other hyperparameters (described in a
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moment) control additional stopping conditions (min_samples_split, min_sam
ples_leaf, min_weight_fraction_leaf, and max_leaf_nodes).

As you can see, the CART algorithm is a greedy algorithm: it greed-
ily searches for an optimum split at the top level, then repeats the
“1 process at each level. It does not check whether or not the split will
\ lead to the lowest possible impurity several levels down. A greedy
algorithm often produces a reasonably good solution, but it is not
guaranteed to be the optimal solution.

Unfortunately, finding the optimal tree is known to be an NP-Complete problem:? it
requires O(exp(m)) time, making the problem intractable even for fairly small train-
ing sets. This is why we must settle for a “reasonably good” solution.

Computational Complexity

Making predictions requires traversing the Decision Tree from the root to a leaf.
Decision Trees are generally approximately balanced, so traversing the Decision Tree
requires going through roughly O(log,(m)) nodes.’ Since each node only requires
checking the value of one feature, the overall prediction complexity is just O(log,(m)),
independent of the number of features. So predictions are very fast, even when deal-
ing with large training sets.

However, the training algorithm compares all features (or less if max_features is set)
on all samples at each node. This results in a training complexity of O(n x m log(m)).
For small training sets (less than a few thousand instances), Scikit-Learn can speed up
training by presorting the data (set presort=True), but this slows down training con-
siderably for larger training sets.

Gini Impurity or Entropy?

By default, the Gini impurity measure is used, but you can select the entropy impurity
measure instead by setting the criterion hyperparameter to "entropy". The concept
of entropy originated in thermodynamics as a measure of molecular disorder:
entropy approaches zero when molecules are still and well ordered. It later spread to a
wide variety of domains, including Shannon’s information theory, where it measures

2 P is the set of problems that can be solved in polynomial time. NP is the set of problems whose solutions can
be verified in polynomial time. An NP-Hard problem is a problem to which any NP problem can be reduced
in polynomial time. An NP-Complete problem is both NP and NP-Hard. A major open mathematical ques-
tion is whether or not P = NP. If P # NP (which seems likely), then no polynomial algorithm will ever be
found for any NP-Complete problem (except perhaps on a quantum computer).

3 log, is the binary logarithm. It is equal to log,(m) = log(m) / log(2).
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the average information content of a message:* entropy is zero when all messages are
identical. In Machine Learning, it is frequently used as an impurity measure: a set’s
entropy is zero when it contains instances of only one class. Equation 6-3 shows the

definition of the entropy of the i node. For example, the depth-2 left node in

. 49 49\ 5 5
Figure 6-1 has an entropy equal to —=; log (g) — < log (ﬁ) =~ 0.31.

Equation 6-3. Entropy

n
H;= - kE::I Pi,kIOg(Pi,k)
pi,k¢0

So should you use Gini impurity or entropy? The truth is, most of the time it does not
make a big difference: they lead to similar trees. Gini impurity is slightly faster to
compute, so it is a good default. However, when they differ, Gini impurity tends to
isolate the most frequent class in its own branch of the tree, while entropy tends to
produce slightly more balanced trees.?

Regularization Hyperparameters

Decision Trees make very few assumptions about the training data (as opposed to lin-
ear models, which obviously assume that the data is linear, for example). If left
unconstrained, the tree structure will adapt itself to the training data, fitting it very
closely, and most likely overfitting it. Such a model is often called a nonparametric
model, not because it does not have any parameters (it often has a lot) but because the
number of parameters is not determined prior to training, so the model structure is
free to stick closely to the data. In contrast, a parametric model such as a linear model
has a predetermined number of parameters, so its degree of freedom is limited,
reducing the risk of overfitting (but increasing the risk of underfitting).

To avoid overfitting the training data, you need to restrict the Decision Tree’s freedom
during training. As you know by now, this is called regularization. The regularization
hyperparameters depend on the algorithm used, but generally you can at least restrict
the maximum depth of the Decision Tree. In Scikit-Learn, this is controlled by the
max_depth hyperparameter (the default value is None, which means unlimited).
Reducing max_depth will regularize the model and thus reduce the risk of overfitting.

The DecisionTreeClassifier class has a few other parameters that similarly restrict
the shape of the Decision Tree: min_samples_split (the minimum number of sam-

4 A reduction of entropy is often called an information gain.

5 See Sebastian Raschka’s interesting analysis for more details.
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ples a node must have before it can be split), min_samples_leaf (the minimum num-
ber of samples a leaf node must have), min_weight_fraction_leaf (same as
min_samples_leaf but expressed as a fraction of the total number of weighted
instances), max_leaf_nodes (maximum number of leaf nodes), and max_features
(maximum number of features that are evaluated for splitting at each node). Increas-
ing min_* hyperparameters or reducing max_* hyperparameters will regularize the
model.

Other algorithms work by first training the Decision Tree without
restrictions, then pruning (deleting) unnecessary nodes. A node
whose children are all leaf nodes is considered unnecessary if the
purity improvement it provides is not statistically significant. Stan-
dard statistical tests, such as the y* test, are used to estimate the
probability that the improvement is purely the result of chance
(which is called the null hypothesis). If this probability, called the p-
value, is higher than a given threshold (typically 5%, controlled by
a hyperparameter), then the node is considered unnecessary and its
children are deleted. The pruning continues until all unnecessary
nodes have been pruned.

Figure 6-3 shows two Decision Trees trained on the moons dataset (introduced in
Chapter 5). On the left, the Decision Tree is trained with the default hyperparameters
(i.e., no restrictions), and on the right the Decision Tree is trained with min_sam
ples_leaf=4. It is quite obvious that the model on the left is overfitting, and the
model on the right will probably generalize better.

Figure 6-3. Regularization using min_samples_leaf
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Regression

Decision Trees are also capable of performing regression tasks. Let’s build a regres-
sion tree using Scikit-Learn’s DecisionTreeRegressor class, training it on a noisy
quadratic dataset with max_depth=2:

from import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(max_depth=2)
tree_reg.fit(X, y)

The resulting tree is represented on Figure 6-4.

Figure 6-4. A Decision Tree for regression

This tree looks very similar to the classification tree you built earlier. The main differ-
ence is that instead of predicting a class in each node, it predicts a value. For example,
suppose you want to make a prediction for a new instance with x; = 0.6. You traverse
the tree starting at the root, and you eventually reach the leaf node that predicts
value=0.1106. This prediction is simply the average target value of the 110 training
instances associated to this leaf node. This prediction results in a Mean Squared Error
(MSE) equal to 0.0151 over these 110 instances.

This model’s predictions are represented on the left of Figure 6-5. If you set
max_depth=3, you get the predictions represented on the right. Notice how the pre-
dicted value for each region is always the average target value of the instances in that
region. The algorithm splits each region in a way that makes most training instances
as close as possible to that predicted value.
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Figure 6-5. Predictions of two Decision Tree regression models

The CART algorithm works mostly the same way as earlier, except that instead of try-
ing to split the training set in a way that minimizes impurity, it now tries to split the
training set in a way that minimizes the MSE. Equation 6-4 shows the cost function
that the algorithm tries to minimize.

Equation 6-4. CART cost function for regression

i\ 2
MSE_ . = o=y
Moy node ; e%o de ()/ node ~ 7V )

m

where

mright
](k’ tk) = MSEleft + m MSEright

~ 1 Z @)
ynOde mnode i€ nodey

Just like for classification tasks, Decision Trees are prone to overfitting when dealing
with regression tasks. Without any regularization (i.e., using the default hyperpara-
meters), you get the predictions on the left of Figure 6-6. It is obviously overfitting
the training set very badly. Just setting min_samples_leaf=10 results in a much more
reasonable model, represented on the right of Figure 6-6.

No restrictions min_samples_leaf=10

—

1

Figure 6-6. Regularizing a Decision Tree regressor
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Instability

Hopefully by now you are convinced that Decision Trees have a lot going for them:
they are simple to understand and interpret, easy to use, versatile, and powerful.
However they do have a few limitations. First, as you may have noticed, Decision
Trees love orthogonal decision boundaries (all splits are perpendicular to an axis),
which makes them sensitive to training set rotation. For example, Figure 6-7 shows a
simple linearly separable dataset: on the left, a Decision Tree can split it easily, while
on the right, after the dataset is rotated by 45°, the decision boundary looks unneces-
sarily convoluted. Although both Decision Trees fit the training set perfectly, it is very
likely that the model on the right will not generalize well. One way to limit this prob-
lem is to use PCA (see Chapter 8), which often results in a better orientation of the
training data.

Figure 6-7. Sensitivity to training set rotation

More generally, the main issue with Decision Trees is that they are very sensitive to
small variations in the training data. For example, if you just remove the widest Iris-
Versicolor from the iris training set (the one with petals 4.8 cm long and 1.8 cm wide)
and train a new Decision Tree, you may get the model represented in Figure 6-8. As
you can see, it looks very different from the previous Decision Tree (Figure 6-2).
Actually, since the training algorithm used by Scikit-Learn is stochastic® you may
get very different models even on the same training data (unless you set the
random_state hyperparameter).

6 It randomly selects the set of features to evaluate at each node.
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Figure 6-8. Sensitivity to training set details

Random Forests can limit this instability by averaging predictions over many trees, as
we will see in the next chapter.

Exercises

. What is the approximate depth of a Decision Tree trained (without restrictions)

on a training set with 1 million instances?

. Is a node’s Gini impurity generally lower or greater than its parent’s? Is it gener-

ally lower/greater, or always lower/greater?

. If a Decision Tree is overfitting the training set, is it a good idea to try decreasing

max_depth?

If a Decision Tree is underfitting the training set, is it a good idea to try scaling
the input features?

. If it takes one hour to train a Decision Tree on a training set containing 1 million

instances, roughly how much time will it take to train another Decision Tree on a
training set containing 10 million instances?

If your training set contains 100,000 instances, will setting presort=True speed
up training?

Train and fine-tune a Decision Tree for the moons dataset.
a. Generate a moons dataset using make_moons(n_samples=10000, noise=0.4).

b. Splitit into a training set and a test set using train_test_split().
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c. Use grid search with cross-validation (with the help of the GridSearchcv
class) to find good hyperparameter values for a DecisionTreeClassifier.
Hint: try various values for max_leaf_nodes.

d. Train it on the full training set using these hyperparameters, and measure
your model’s performance on the test set. You should get roughly 85% to 87%
accuracy.

8. Grow a forest.

a. Continuing the previous exercise, generate 1,000 subsets of the training set,
each containing 100 instances selected randomly. Hint: you can use Scikit-
Learn’s ShuffleSplit class for this.

b. Train one Decision Tree on each subset, using the best hyperparameter values
found above. Evaluate these 1,000 Decision Trees on the test set. Since they
were trained on smaller sets, these Decision Trees will likely perform worse
than the first Decision Tree, achieving only about 80% accuracy.

c. Now comes the magic. For each test set instance, generate the predictions of
the 1,000 Decision Trees, and keep only the most frequent prediction (you can
use SciPy’s mode() function for this). This gives you majority-vote predictions
over the test set.

d. Evaluate these predictions on the test set: you should obtain a slightly higher
accuracy than your first model (about 0.5 to 1.5% higher). Congratulations,
you have trained a Random Forest classifier!

Solutions to these exercises are available in Appendix A.
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CHAPTER7
Ensemble Learning and Random Forests

Suppose you ask a complex question to thousands of random people, then aggregate
their answers. In many cases you will find that this aggregated answer is better than
an expert’s answer. This is called the wisdom of the crowd. Similarly, if you aggregate
the predictions of a group of predictors (such as classifiers or regressors), you will
often get better predictions than with the best individual predictor. A group of pre-
dictors is called an ensemble; thus, this technique is called Ensemble Learning, and an
Ensemble Learning algorithm is called an Ensemble method.

For example, you can train a group of Decision Tree classifiers, each on a different
random subset of the training set. To make predictions, you just obtain the predic-
tions of all individual trees, then predict the class that gets the most votes (see the last
exercise in Chapter 6). Such an ensemble of Decision Trees is called a Random Forest,
and despite its simplicity, this is one of the most powerful Machine Learning algo-
rithms available today.

Moreover, as we discussed in Chapter 2, you will often use Ensemble methods near
the end of a project, once you have already built a few good predictors, to combine
them into an even better predictor. In fact, the winning solutions in Machine Learn-
ing competitions often involve several Ensemble methods (most famously in the Net-
flix Prize competition).

In this chapter we will discuss the most popular Ensemble methods, including bag-
ging, boosting, stacking, and a few others. We will also explore Random Forests.

Voting Classifiers

Suppose you have trained a few classifiers, each one achieving about 80% accuracy.
You may have a Logistic Regression classifier, an SVM classifier, a Random Forest
classifier, a K-Nearest Neighbors classifier, and perhaps a few more (see Figure 7-1).
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Figure 7-1. Training diverse classifiers

A very simple way to create an even better classifier is to aggregate the predictions of
each classifier and predict the class that gets the most votes. This majority-vote classi-
fier is called a hard voting classifier (see Figure 7-2).

Figure 7-2. Hard voting classifier predictions

Somewhat surprisingly, this voting classifier often achieves a higher accuracy than the
best classifier in the ensemble. In fact, even if each classifier is a weak learner (mean-
ing it does only slightly better than random guessing), the ensemble can still be a
strong learner (achieving high accuracy), provided there are a sufficient number of
weak learners and they are sufficiently diverse.
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How is this possible? The following analogy can help shed some light on this mystery.
Suppose you have a slightly biased coin that has a 51% chance of coming up heads,
and 49% chance of coming up tails. If you toss it 1,000 times, you will generally get
more or less 510 heads and 490 tails, and hence a majority of heads. If you do the
math, you will find that the probability of obtaining a majority of heads after 1,000
tosses is close to 75%. The more you toss the coin, the higher the probability (e.g.,
with 10,000 tosses, the probability climbs over 97%). This is due to the law of large
numbers: as you keep tossing the coin, the ratio of heads gets closer and closer to the
probability of heads (51%). Figure 7-3 shows 10 series of biased coin tosses. You can
see that as the number of tosses increases, the ratio of heads approaches 51%. Eventu-
ally all 10 series end up so close to 51% that they are consistently above 50%.

Figure 7-3. The law of large numbers

Similarly, suppose you build an ensemble containing 1,000 classifiers that are individ-
ually correct only 51% of the time (barely better than random guessing). If you pre-
dict the majority voted class, you can hope for up to 75% accuracy! However, this is
only true if all classifiers are perfectly independent, making uncorrelated errors,
which is clearly not the case since they are trained on the same data. They are likely to
make the same types of errors, so there will be many majority votes for the wrong
class, reducing the ensemble’s accuracy.

Ensemble methods work best when the predictors are as independ-
ent from one another as possible. One way to get diverse classifiers
is to train them using very different algorithms. This increases the
chance that they will make very different types of errors, improving
the ensemble’s accuracy.
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The following code creates and trains a voting classifier in Scikit-Learn, composed of
three diverse classifiers (the training set is the moons dataset, introduced in Chap-
ter 5):

from import RandomForestClassifier
from import VotingClassifier

from import LogisticRegression
from import SVC

log_clf = LogisticRegression()
rnd_clf = RandomForestClassifier()
svm_clf = SvC()

voting_clf = VotingClassifier(
estimators=[('lr', log_clf), ('rf', rnd_clf), ('svc', svm_clf)],
voting="hard"'
)
voting_clf.fit(X_train, y_train)

Let’s look at each classifier’s accuracy on the test set:

>>> from import accuracy_score

>>> for clf in (log_clf, rnd_clf, svm_clf, voting_clf):

>>> clf.fit(X_train, y_train)

>>> y_pred = clf.predict(X_test)

>5> print(clf.__class__.__name__, accuracy_score(y_test, y_pred))
LogisticRegression 0.864

RandomForestClassifier 0.872

SVC 0.888

VotingClassifier 0.896

There you have it! The voting classifier slightly outperforms all the individual classifi-
ers.

If all classifiers are able to estimate class probabilities (i.e., they have a pre

dict_proba() method), then you can tell Scikit-Learn to predict the class with the
highest class probability, averaged over all the individual classifiers. This is called soft
voting. It often achieves higher performance than hard voting because it gives more
weight to highly confident votes. All you need to do is replace voting="hard" with
voting="soft" and ensure that all classifiers can estimate class probabilities. This is
not the case of the SVC class by default, so you need to set its probability hyperpara-
meter to True (this will make the SVC class use cross-validation to estimate class prob-
abilities, slowing down training, and it will add a predict_proba() method). If you
modify the preceding code to use soft voting, you will find that the voting classifier
achieves over 91% accuracy!
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Bagging and Pasting

One way to get a diverse set of classifiers is to use very different training algorithms,
as just discussed. Another approach is to use the same training algorithm for every
predictor, but to train them on different random subsets of the training set. When
sampling is performed with replacement, this method is called bagging' (short for
bootstrap aggregating?). When sampling is performed without replacement, it is called
pasting.?

In other words, both bagging and pasting allow training instances to be sampled sev-
eral times across multiple predictors, but only bagging allows training instances to be
sampled several times for the same predictor. This sampling and training process is
represented in Figure 7-4.

Figure 7-4. Pasting/bagging training set sampling and training

Once all predictors are trained, the ensemble can make a prediction for a new
instance by simply aggregating the predictions of all predictors. The aggregation
function is typically the statistical mode (i.e., the most frequent prediction, just like a
hard voting classifier) for classification, or the average for regression. Each individual
predictor has a higher bias than if it were trained on the original training set, but
aggregation reduces both bias and variance.* Generally, the net result is that the

1 “Bagging Predictors,” L. Breiman (1996).
2 In statistics, resampling with replacement is called bootstrapping.
3 “Pasting small votes for classification in large databases and on-line,” L. Breiman (1999).

4 Bias and variance were introduced in Chapter 4.
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ensemble has a similar bias but a lower variance than a single predictor trained on the
original training set.

As you can see in Figure 7-4, predictors can all be trained in parallel, via different
CPU cores or even different servers. Similarly, predictions can be made in parallel.
This is one of the reasons why bagging and pasting are such popular methods: they
scale very well.

Bagging and Pasting in Scikit-Learn

Scikit-Learn offers a simple API for both bagging and pasting with the BaggingClas
sifier class (or BaggingRegressor for regression). The following code trains an
ensemble of 500 Decision Tree classifiers,” each trained on 100 training instances ran-
domly sampled from the training set with replacement (this is an example of bagging,
but if you want to use pasting instead, just set bootstrap=False). The n_jobs param-
eter tells Scikit-Learn the number of CPU cores to use for training and predictions
(-1 tells Scikit-Learn to use all available cores):

from import BaggingClassifier
from import DecisionTreeClassifier

bag_clf = BaggingClassifier(
DecisionTreeClassifier(), n_estimators=500,
max_samples=100, bootstrap=True, n_jobs=-1
)
bag_clf.fit(X_train, y_train)
y_pred = bag_clf.predict(X_test)

The BaggingClassifier automatically performs soft voting
instead of hard voting if the base classifier can estimate class proba-
bilities (i.e., if it has a predict_proba() method), which is the case
with Decision Trees classifiers.

Figure 7-5 compares the decision boundary of a single Decision Tree with the deci-
sion boundary of a bagging ensemble of 500 trees (from the preceding code), both
trained on the moons dataset. As you can see, the ensemble’s predictions will likely
generalize much better than the single Decision Tree’s predictions: the ensemble has a
comparable bias but a smaller variance (it makes roughly the same number of errors
on the training set, but the decision boundary is less irregular).

5 max_samples can alternatively be set to a float between 0.0 and 1.0, in which case the max number of instances
to sample is equal to the size of the training set times max_samples.
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Figure 7-5. A single Decision Tree versus a bagging ensemble of 500 trees

Bootstrapping introduces a bit more diversity in the subsets that each predictor is
trained on, so bagging ends up with a slightly higher bias than pasting, but this also
means that predictors end up being less correlated so the ensemble’s variance is
reduced. Overall, bagging often results in better models, which explains why it is gen-
erally preferred. However, if you have spare time and CPU power you can use cross-
validation to evaluate both bagging and pasting and select the one that works best.

Out-of-Bag Evaluation

With bagging, some instances may be sampled several times for any given predictor,
while others may not be sampled at all. By default a BaggingClassifier samples m
training instances with replacement (bootstrap=True), where m is the size of the
training set. This means that only about 63% of the training instances are sampled on
average for each predictor.® The remaining 37% of the training instances that are not
sampled are called out-of-bag (oob) instances. Note that they are not the same 37%
for all predictors.

Since a predictor never sees the oob instances during training, it can be evaluated on
these instances, without the need for a separate validation set or cross-validation. You
can evaluate the ensemble itself by averaging out the oob evaluations of each predic-
tor.

In Scikit-Learn, you can set oob_score=True when creating a BaggingClassifier to
request an automatic oob evaluation after training. The following code demonstrates
this. The resulting evaluation score is available through the oob_score_ variable:

>>> bag_clf = BaggingClassifier(

>>> DecisionTreeClassifier(), n_estimators=500,
>>> bootstrap=True, n_jobs=-1, oob_score=True)

6 As m grows, this ratio approaches 1 - exp(-1) = 63.212%.
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>>> bag_clf.fit(X_train, y_train)
>>> bag_clf.oob_score_
0.93066666666666664

According to this oob evaluation, this BaggingClassifier is likely to achieve about
93.1% accuracy on the test set. Let’s verify this:

>>> from import accuracy_score
>>> y_pred = bag_clf.predict(X_test)

>>> accuracy_score(y_test, y_pred)
0.93600000000000005

We get 93.6% accuracy on the test set—close enough!

The oob decision function for each training instance is also available through the
oob_decision_function_ variable. In this case (since the base estimator has a pre
dict_proba() method) the decision function returns the class probabilities for each
training instance. For example, the oob evaluation estimates that the second training
instance has a 60.6% probability of belonging to the positive class (and 39.4% of
belonging to the positive class):

>>> bag_clf.oob_decision_function_
array([[ o. , 1. 1,
[ 0.60588235, 0.39411765],
[ 1. , 0. 1,
[
[
[

1,
. 1,
.510416671])

B

(oo RN
[ o)

.48958333,

Random Patches and Random Subspaces

The BaggingClassifier class supports sampling the features as well. This is con-
trolled by two hyperparameters: max_features and bootstrap_features. They work
the same way as max_samples and bootstrap, but for feature sampling instead of
instance sampling. Thus, each predictor will be trained on a random subset of the
input features.

This is particularly useful when you are dealing with high-dimensional inputs (such
as images). Sampling both training instances and features is called the Random
Patches method.” Keeping all training instances (i.e., bootstrap=False and max_sam
ples=1.0) but sampling features (i.e., bootstrap_features=True and/or max_fea
tures smaller than 1.0) is called the Random Subspaces method.?

7 “Ensembles on Random Patches,” G. Louppe and P. Geurts (2012).

8 “The random subspace method for constructing decision forests,” Tin Kam Ho (1998).
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Sampling features results in even more predictor diversity, trading a bit more bias for
a lower variance.

Random Forests

As we have discussed, a Random Forest’® is an ensemble of Decision Trees, generally
trained via the bagging method (or sometimes pasting), typically with max_samples
set to the size of the training set. Instead of building a BaggingClassifier and pass-
ing it a DecisionTreeClassifier, you can instead use the RandomForestClassifier
class, which is more convenient and optimized for Decision Trees' (similarly, there is
a RandomForestRegressor class for regression tasks). The following code trains a
Random Forest classifier with 500 trees (each limited to maximum 16 nodes), using
all available CPU cores:

from import RandomForestClassifier

rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16, n_jobs=-1)
rnd_clf.fit(X_train, y_train)

y_pred_rf = rnd_clf.predict(X_test)

With a few exceptions, a RandomForestClassifier has all the hyperparameters of a
DecisionTreeClassifier (to control how trees are grown), plus all the hyperpara-
meters of a BaggingClassifier to control the ensemble itself.!!

The Random Forest algorithm introduces extra randomness when growing trees;
instead of searching for the very best feature when splitting a node (see Chapter 6), it
searches for the best feature among a random subset of features. This results in a
greater tree diversity, which (once again) trades a higher bias for a lower variance,
generally yielding an overall better model. The following BaggingClassifier is
roughly equivalent to the previous RandomForestClassifier:

bag_clf = BaggingClassifier(

DecisionTreeClassifier(splitter="random", max_leaf_nodes=16),
n_estimators=500, max_samples=1.0, bootstrap=True, n_jobs=-1

9 “Random Decision Forests,” T. Ho (1995).
10 The BaggingClassifier class remains useful if you want a bag of something other than Decision Trees.

11 There are a few notable exceptions: splitter is absent (forced to "random"), presort is absent (forced to
False), max_samples is absent (forced to 1.0), and base_estimator is absent (forced to DecisionTreeClassi
fier with the provided hyperparameters).
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Extra-Trees

When you are growing a tree in a Random Forest, at each node only a random subset
of the features is considered for splitting (as discussed earlier). It is possible to make
trees even more random by also using random thresholds for each feature rather than
searching for the best possible thresholds (like regular Decision Trees do).

A forest of such extremely random trees is simply called an Extremely Randomized
Trees ensemble'? (or Extra-Trees for short). Once again, this trades more bias for a
lower variance. It also makes Extra-Trees much faster to train than regular Random
Forests since finding the best possible threshold for each feature at every node is one
of the most time-consuming tasks of growing a tree.

You can create an Extra-Trees classifier using Scikit-Learn’s ExtraTreesClassifier
class. Its API is identical to the RandomForestClassifier class. Similarly, the Extra
TreesRegressor class has the same API as the RandomForestRegressor class.

It is hard to tell in advance whether a RandomForestClassifier
will perform better or worse than an ExtraTreesClassifier. Gen-
erally, the only way to know is to try both and compare them using
cross-validation (and tuning the hyperparameters using grid
search).

Feature Importance

Lastly, if you look at a single Decision Tree, important features are likely to appear
closer to the root of the tree, while unimportant features will often appear closer to
the leaves (or not at all). It is therefore possible to get an estimate of a feature’s impor-
tance by computing the average depth at which it appears across all trees in the forest.
Scikit-Learn computes this automatically for every feature after training. You can
access the result using the feature_importances_ variable. For example, the follow-
ing code trains a RandomForestClassifier on the iris dataset (introduced in Chap-
ter 4) and outputs each feature’s importance. It seems that the most important
features are the petal length (44%) and width (42%), while sepal length and width are
rather unimportant in comparison (11% and 2%, respectively):

>>> from import load_iris

>>> iris = load_1iris()

>>> rnd_clf = RandomForestClassifier(n_estimators=500, n_jobs=-1)

>>> rnd_clf.fit(iris["data"], iris["target"])

>>> for name, score in zip(iris["feature_names"], rnd_clf.feature_importances_):
>>> print(name, score)

sepal length (cm) 0.112492250999

12 “Extremely randomized trees,” P. Geurts, D. Ernst, L. Wehenkel (2005).
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sepal width (cm) 0.0231192882825
petal length (cm) 0.441030464364
petal width (cm) 0.423357996355

Similarly, if you train a Random Forest classifier on the MNIST dataset (introduced
in Chapter 3) and plot each pixel’s importance, you get the image represented in
Figure 7-6.

— Very important

Not important

Figure 7-6. MNIST pixel importance (according to a Random Forest classifier)

Random Forests are very handy to get a quick understanding of what features
actually matter, in particular if you need to perform feature selection.

Boosting

Boosting (originally called hypothesis boosting) refers to any Ensemble method that
can combine several weak learners into a strong learner. The general idea of most
boosting methods is to train predictors sequentially, each trying to correct its prede-
cessor. There are many boosting methods available, but by far the most popular are
AdaBoost” (short for Adaptive Boosting) and Gradient Boosting. Let’s start with Ada-
Boost.

13 “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” Yoav Freund,
Robert E. Schapire (1997).
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AdaBoost

One way for a new predictor to correct its predecessor is to pay a bit more attention
to the training instances that the predecessor underfitted. This results in new predic-
tors focusing more and more on the hard cases. This is the technique used by Ada-
Boost.

For example, to build an AdaBoost classifier, a first base classifier (such as a Decision
Tree) is trained and used to make predictions on the training set. The relative weight
of misclassified training instances is then increased. A second classifier is trained
using the updated weights and again it makes predictions on the training set, weights
are updated, and so on (see Figure 7-7).

Figure 7-7. AdaBoost sequential training with instance weight updates

Figure 7-8 shows the decision boundaries of five consecutive predictors on the
moons dataset (in this example, each predictor is a highly regularized SVM classifier
with an RBF kernel™). The first classifier gets many instances wrong, so their weights
get boosted. The second classifier therefore does a better job on these instances, and
so on. The plot on the right represents the same sequence of predictors except that
the learning rate is halved (i.e., the misclassified instance weights are boosted half as
much at every iteration). As you can see, this sequential learning technique has some
similarities with Gradient Descent, except that instead of tweaking a single predictor’s

14 This is just for illustrative purposes. SVMs are generally not good base predictors for AdaBoost, because they
are slow and tend to be unstable with AdaBoost.
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parameters to minimize a cost function, AdaBoost adds predictors to the ensemble,
gradually making it better.

Figure 7-8. Decision boundaries of consecutive predictors

Once all predictors are trained, the ensemble makes predictions very much like bag-
ging or pasting, except that predictors have different weights depending on their
overall accuracy on the weighted training set.

There is one important drawback to this sequential learning techni-
que: it cannot be parallelized (or only partially), since each predic-
tor can only be trained after the previous predictor has been

\ trained and evaluated. As a result, it does not scale as well as bag-
ging or pasting.

Let’s take a closer look at the AdaBoost algorithm. Each instance weight w is initially
set to % A first predictor is trained and its weighted error rate r, is computed on the
training set; see Equation 7-1.

Equation 7-1. Weighted error rate of the j" predictor

L where f;i) is the jth predictor’s prediction for the i™ instance.
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The predictor’s weight «; is then computed using Equation 7-2, where 7 is the learn-
ing rate hyperparameter (defaults to 1)." The more accurate the predictor is, the
higher its weight will be. If it is just guessing randomly, then its weight will be close to
zero. However, if it is most often wrong (i.e., less accurate than random guessing),
then its weight will be negative.

Equation 7-2. Predictor weight

l—rj

a. =1 log
J r].

Next the instance weights are updated using Equation 7-3: the misclassified instances
are boosted.

Equation 7-3. Weight update rule
fori=1,2,---,m
y W) if 50 = 50
w1 , »
w(® exp (ocj) if )7].(’) =y

Then all the instance weights are normalized (i.e., divided by X" 11v1/(")).

Finally, a new predictor is trained using the updated weights, and the whole process is
repeated (the new predictor’s weight is computed, the instance weights are updated,
then another predictor is trained, and so on). The algorithm stops when the desired
number of predictors is reached, or when a perfect predictor is found.

To make predictions, AdaBoost simply computes the predictions of all the predictors
and weighs them using the predictor weights &, The predicted class is the one that
receives the majority of weighted votes (see Equation 7-4).

Equation 7-4. AdaBoost predictions

N
J(x) = argmax ) « . where N is the number of predictors.
k

1
=k

o

i
ij

15 The original AdaBoost algorithm does not use a learning rate hyperparameter.
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Scikit-Learn actually uses a multiclass version of AdaBoost called SAMME' (which
stands for Stagewise Additive Modeling using a Multiclass Exponential loss function).
When there are just two classes, SAMME is equivalent to AdaBoost. Moreover, if the
predictors can estimate class probabilities (i.e., if they have a predict_proba()
method), Scikit-Learn can use a variant of SAMME called SAMME.R (the R stands
for “Real”), which relies on class probabilities rather than predictions and generally
performs better.

The following code trains an AdaBoost classifier based on 200 Decision Stumps using
Scikit-Learn’s AdaBoostClassifier class (as you might expect, there is also an Ada
BoostRegressor class). A Decision Stump is a Decision Tree with max_depth=1—in
other words, a tree composed of a single decision node plus two leaf nodes. This is
the default base estimator for the AdaBoostClassifier class:

from import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=1), n_estimators=200,
algorithm="SAMME.R", learning_rate=0.5

)
ada_clf.fit(X_train, y_train)

If your AdaBoost ensemble is overfitting the training set, you can
try reducing the number of estimators or more strongly regulariz-
ing the base estimator.

Gradient Boosting

Another very popular Boosting algorithm is Gradient Boosting."” Just like AdaBoost,
Gradient Boosting works by sequentially adding predictors to an ensemble, each one
correcting its predecessor. However, instead of tweaking the instance weights at every
iteration like AdaBoost does, this method tries to fit the new predictor to the residual
errors made by the previous predictor.

Let’s go through a simple regression example using Decision Trees as the base predic-
tors (of course Gradient Boosting also works great with regression tasks). This is
called Gradient Tree Boosting, or Gradient Boosted Regression Trees (GBRT). First, let’s
fit a DecisionTreeRegressor to the training set (for example, a noisy quadratic train-
ing set):

16 For more details, see “Multi-Class AdaBoost,” J. Zhu et al. (2006).
17 First introduced in “Arcing the Edge,” L. Breiman (1997).
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from import DecisionTreeRegressor

tree_regl = DecisionTreeRegressor(max_depth=2)
tree_regl.fit(X, y)

Now train a second DecisionTreeRegressor on the residual errors made by the first
predictor:
y2 =y - tree_regl.predict(X)

tree_reg2 = DecisionTreeRegressor(max_depth=2)
tree_reg2.fit(X, y2)

Then we train a third regressor on the residual errors made by the second predictor:

y3 = y2 - tree_reg2.predict(X)

tree_reg3 = DecisionTreeRegressor(max_depth=2)

tree_reg3.fit(X, y3)
Now we have an ensemble containing three trees. It can make predictions on a new
instance simply by adding up the predictions of all the trees:

y_pred = sum(tree.predict(X_new) for tree in (tree_regl, tree_reg2, tree_reg3))

Figure 7-9 represents the predictions of these three trees in the left column, and the
ensemble’s predictions in the right column. In the first row, the ensemble has just one
tree, so its predictions are exactly the same as the first tree’s predictions. In the second
row, a new tree is trained on the residual errors of the first tree. On the right you can
see that the ensemble’s predictions are equal to the sum of the predictions of the first
two trees. Similarly, in the third row another tree is trained on the residual errors of
the second tree. You can see that the ensemble’s predictions gradually get better as
trees are added to the ensemble.

A simpler way to train GBRT ensembles is to use Scikit-Learn’s GradientBoostingRe
gressor class. Much like the RandomForestRegressor class, it has hyperparameters to
control the growth of Decision Trees (e.g., max_depth, min_samples_leaf, and so on),
as well as hyperparameters to control the ensemble training, such as the number of
trees (n_estimators). The following code creates the same ensemble as the previous
one:

from import GradientBoostingRegressor

gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3, learning_rate=1.0)
gbrt.fit(X, y)
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Figure 7-9. Gradient Boosting

The learning_rate hyperparameter scales the contribution of each tree. If you set it
to a low value, such as 0.1, you will need more trees in the ensemble to fit the train-
ing set, but the predictions will usually generalize better. This is a regularization tech-
nique called shrinkage. Figure 7-10 shows two GBRT ensembles trained with a low
learning rate: the one on the left does not have enough trees to fit the training set,
while the one on the right has too many trees and overfits the training set.
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Figure 7-10. GBRT ensembles with not enough predictors (left) and too many (right)

In order to find the optimal number of trees, you can use early stopping (see Chap-
ter 4). A simple way to implement this is to use the staged_predict() method: it
returns an iterator over the predictions made by the ensemble at each stage of train-
ing (with one tree, two trees, etc.). The following code trains a GBRT ensemble with
120 trees, then measures the validation error at each stage of training to find the opti-
mal number of trees, and finally trains another GBRT ensemble using the optimal

number of trees:

import as
from
from

import train_test_split
import mean_squared_error

X_train, X_val, y_train, y_val = train_test_split(X, y)

gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=120)

gbrt.fit(X_train, y_train)

errors =

[mean_squared_error(y_val, y_pred)

for y_pred in gbrt.staged_predict(X_val)]

bst_n_estimators =

np.argmin(errors)

gbrt_best = GradientBoostingRegressor(max_depth=2,n_estimators=bst_n_estimators)

gbrt_best.fit(X_train, y_train)

The validation errors are represented on the left of Figure 7-11, and the best model

predictions are represented on the right.
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Figure 7-11. Tuning the number of trees using early stopping

It is also possible to implement early stopping by actually stopping training early
(instead of training a large number of trees first and then looking back to find the
optimal number). You can do so by setting warm_start=True, which makes Scikit-
Learn keep existing trees when the fit() method is called, allowing incremental
training. The following code stops training when the validation error does not
improve for five iterations in a row:

gbrt = GradientBoostingRegressor(max_depth=2, warm_start=True)

min_val_error = float("inf")
error_going_up = 0
for n_estimators in range(1, 120):
gbrt.n_estimators = n_estimators
gbrt.fit(X_train, y_train)
y_pred = gbrt.predict(X_val)
val_error = mean_squared_error(y_val, y_pred)
if val_error < min_val_error:
min_val_error = val_error
error_going_up = 0
else:
error_going_up += 1
if error_going_up == 5:
break # early stopping

The GradientBoostingRegressor class also supports a subsample hyperparameter,
which specifies the fraction of training instances to be used for training each tree. For
example, if subsample=0.25, then each tree is trained on 25% of the training instan-
ces, selected randomly. As you can probably guess by now, this trades a higher bias
for a lower variance. It also speeds up training considerably. This technique is called
Stochastic Gradient Boosting.
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It is possible to use Gradient Boosting with other cost functions.
This is controlled by the loss hyperparameter (see Scikit-Learn’s
documentation for more details).

Stacking

The last Ensemble method we will discuss in this chapter is called stacking (short for
stacked generalization).'® It is based on a simple idea: instead of using trivial functions
(such as hard voting) to aggregate the predictions of all predictors in an ensemble,
why don’t we train a model to perform this aggregation? Figure 7-12 shows such an
ensemble performing a regression task on a new instance. Each of the bottom three
predictors predicts a different value (3.1, 2.7, and 2.9), and then the final predictor
(called a blender, or a meta learner) takes these predictions as inputs and makes the
final prediction (3.0).

Figure 7-12. Aggregating predictions using a blending predictor

To train the blender, a common approach is to use a hold-out set."” Let’s see how it
works. First, the training set is split in two subsets. The first subset is used to train the
predictors in the first layer (see Figure 7-13).

18 “Stacked Generalization,” D. Wolpert (1992).

19 Alternatively, it is possible to use out-of-fold predictions. In some contexts this is called stacking, while using a
hold-out set is called blending. However, for many people these terms are synonymous.
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Figure 7-13. Training the first layer

Next, the first layer predictors are used to make predictions on the second (held-out)
set (see Figure 7-14). This ensures that the predictions are “clean,” since the predictors
never saw these instances during training. Now for each instance in the hold-out set
there are three predicted values. We can create a new training set using these predic-
ted values as input features (which makes this new training set three-dimensional),
and keeping the target values. The blender is trained on this new training set, so it
learns to predict the target value given the first layer’s predictions.

Figure 7-14. Training the blender
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It is actually possible to train several different blenders this way (e.g., one using Lin-
ear Regression, another using Random Forest Regression, and so on): we get a whole
layer of blenders. The trick is to split the training set into three subsets: the first one is
used to train the first layer, the second one is used to create the training set used to
train the second layer (using predictions made by the predictors of the first layer),
and the third one is used to create the training set to train the third layer (using pre-
dictions made by the predictors of the second layer). Once this is done, we can make
a prediction for a new instance by going through each layer sequentially, as shown in
Figure 7-15.

Figure 7-15. Predictions in a multilayer stacking ensemble

Unfortunately, Scikit-Learn does not support stacking directly, but it is not too hard
to roll out your own implementation (see the following exercises). Alternatively, you
can use an open source implementation such as brew (available at https://github.com/
viisar/brew).

Exercises

1. If you have trained five different models on the exact same training data, and
they all achieve 95% precision, is there any chance that you can combine these
models to get better results? If so, how? If not, why?

2. What is the difference between hard and soft voting classifiers?
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3. Is it possible to speed up training of a bagging ensemble by distributing it across
multiple servers? What about pasting ensembles, boosting ensembles, random
forests, or stacking ensembles?

4. What is the benefit of out-of-bag evaluation?

5. What makes Extra-Trees more random than regular Random Forests? How can
this extra randomness help? Are Extra-Trees slower or faster than regular Ran-
dom Forests?

6. If your AdaBoost ensemble underfits the training data, what hyperparameters
should you tweak and how?

7. If your Gradient Boosting ensemble overfits the training set, should you increase
or decrease the learning rate?

8. Load the MNIST data (introduced in Chapter 3), and split it into a training set, a
validation set, and a test set (e.g., use the first 40,000 instances for training, the
next 10,000 for validation, and the last 10,000 for testing). Then train various
classifiers, such as a Random Forest classifier, an Extra-Trees classifier, and an
SVM. Next, try to combine them into an ensemble that outperforms them all on
the validation set, using a soft or hard voting classifier. Once you have found one,
try it on the test set. How much better does it perform compared to the individ-
ual classifiers?

9. Run the individual classifiers from the previous exercise to make predictions on
the validation set, and create a new training set with the resulting predictions:
each training instance is a vector containing the set of predictions from all your
classifiers for an image, and the target is the image’s class. Congratulations, you
have just trained a blender, and together with the classifiers they form a stacking
ensemble! Now let’s evaluate the ensemble on the test set. For each image in the
test set, make predictions with all your classifiers, then feed the predictions to the
blender to get the ensemble’s predictions. How does it compare to the voting clas-
sifier you trained earlier?

Solutions to these exercises are available in Appendix A.
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CHAPTER 8
Dimensionality Reduction

Many Machine Learning problems involve thousands or even millions of features for
each training instance. Not only does this make training extremely slow, it can also
make it much harder to find a good solution, as we will see. This problem is often
referred to as the curse of dimensionality.

Fortunately, in real-world problems, it is often possible to reduce the number of fea-
tures considerably, turning an intractable problem into a tractable one. For example,
consider the MNIST images (introduced in Chapter 3): the pixels on the image bor-
ders are almost always white, so you could completely drop these pixels from the
training set without losing much information. Figure 7-6 confirms that these pixels
are utterly unimportant for the classification task. Moreover, two neighboring pixels
are often highly correlated: if you merge them into a single pixel (e.g., by taking the
mean of the two pixel intensities), you will not lose much information.

Reducing dimensionality does lose some information (just like
compressing an image to JPEG can degrade its quality), so even
“1 though it will speed up training, it may also make your system per-
\ form slightly worse. It also makes your pipelines a bit more com-
plex and thus harder to maintain. So you should first try to train
your system with the original data before considering using dimen-
sionality reduction if training is too slow. In some cases, however,
reducing the dimensionality of the training data may filter out
some noise and unnecessary details and thus result in higher per-
formance (but in general it won't; it will just speed up training).

Apart from speeding up training, dimensionality reduction is also extremely useful
for data visualization (or DataViz). Reducing the number of dimensions down to two

205



(or three) makes it possible to plot a high-dimensional training set on a graph and
often gain some important insights by visually detecting patterns, such as clusters.

In this chapter we will discuss the curse of dimensionality and get a sense of what
goes on in high-dimensional space. Then, we will present the two main approaches to
dimensionality reduction (projection and Manifold Learning), and we will go
through three of the most popular dimensionality reduction techniques: PCA, Kernel
PCA, and LLE.

The Curse of Dimensionality

We are so used to living in three dimensions’ that our intuition fails us when we try
to imagine a high-dimensional space. Even a basic 4D hypercube is incredibly hard to
picture in our mind (see Figure 8-1), let alone a 200-dimensional ellipsoid bent in a
1,000-dimensional space.

X

Y

o [o—o z
) ¢
0 1 2 3 4 #Dim

Figure 8-1. Point, segment, square, cube, and tesseract (0D to 4D hypercubes)?

It turns out that many things behave very differently in high-dimensional space. For
example, if you pick a random point in a unit square (a 1 x 1 square), it will have only
about a 0.4% chance of being located less than 0.001 from a border (in other words, it
is very unlikely that a random point will be “extreme” along any dimension). But in a
10,000-dimensional unit hypercube (a1 x 1 x -+ x 1 cube, with ten thousand 1s), this
probability is greater than 99.999999%. Most points in a high-dimensional hypercube
are very close to the border.’

1 Well, four dimensions if you count time, and a few more if you are a string theorist.

2 Watch a rotating tesseract projected into 3D space at http://goo.gl/OM7kt]. Image by Wikipedia user Nerd-
Boy1392 (Creative Commons BY-SA 3.0). Reproduced from https://en.wikipedia.org/wiki/ Tesseract.

3 Fun fact: anyone you know is probably an extremist in at least one dimension (e.g., how much sugar they put
in their coffee), if you consider enough dimensions.
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Here is a more troublesome difference: if you pick two points randomly in a unit
square, the distance between these two points will be, on average, roughly 0.52. If you
pick two random points in a unit 3D cube, the average distance will be roughly 0.66.
But what about two points picked randomly in a 1,000,000-dimensional hypercube?
Well, the average distance, believe it or not, will be about 408.25 (roughly
4/1,000, 000/6)! This is quite counterintuitive: how can two points be so far apart
when they both lie within the same unit hypercube? This fact implies that high-
dimensional datasets are at risk of being very sparse: most training instances are
likely to be far away from each other. Of course, this also means that a new instance
will likely be far away from any training instance, making predictions much less relia-
ble than in lower dimensions, since they will be based on much larger extrapolations.
In short, the more dimensions the training set has, the greater the risk of overfitting
it.

In theory, one solution to the curse of dimensionality could be to increase the size of
the training set to reach a sufficient density of training instances. Unfortunately, in
practice, the number of training instances required to reach a given density grows
exponentially with the number of dimensions. With just 100 features (much less than
in the MNIST problem), you would need more training instances than atoms in the
observable universe in order for training instances to be within 0.1 of each other on
average, assuming they were spread out uniformly across all dimensions.

Main Approaches for Dimensionality Reduction

Before we dive into specific dimensionality reduction algorithms, let’s take a look at
the two main approaches to reducing dimensionality: projection and Manifold
Learning.

Projection

In most real-world problems, training instances are not spread out uniformly across
all dimensions. Many features are almost constant, while others are highly correlated
(as discussed earlier for MNIST'). As a result, all training instances actually lie within
(or close to) a much lower-dimensional subspace of the high-dimensional space. This
sounds very abstract, so let’s look at an example. In Figure 8-2 you can see a 3D data-
set represented by the circles.
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Figure 8-2. A 3D dataset lying close to a 2D subspace

Notice that all training instances lie close to a plane: this is a lower-dimensional (2D)
subspace of the high-dimensional (3D) space. Now if we project every training
instance perpendicularly onto this subspace (as represented by the short lines con-
necting the instances to the plane), we get the new 2D dataset shown in Figure 8-3.
Ta-da! We have just reduced the dataset’s dimensionality from 3D to 2D. Note that
the axes correspond to new features z, and z, (the coordinates of the projections on

the plane).
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Figure 8-3. The new 2D dataset after projection
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However, projection is not always the best approach to dimensionality reduction. In
many cases the subspace may twist and turn, such as in the famous Swiss roll toy data-
set represented in Figure 8-4.

Figure 8-4. Swiss roll dataset

Simply projecting onto a plane (e.g., by dropping x;) would squash different layers of
the Swiss roll together, as shown on the left of Figure 8-5. However, what you really
want is to unroll the Swiss roll to obtain the 2D dataset on the right of Figure 8-5.

Figure 8-5. Squashing by projecting onto a plane (left) versus unrolling the Swiss roll
(right)
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Manifold Learning

The Swiss roll is an example of a 2D manifold. Put simply, a 2D manifold is a 2D
shape that can be bent and twisted in a higher-dimensional space. More generally, a
d-dimensional manifold is a part of an n-dimensional space (where d < n) that locally
resembles a d-dimensional hyperplane. In the case of the Swiss roll, d =2 and n = 3: it
locally resembles a 2D plane, but it is rolled in the third dimension.

Many dimensionality reduction algorithms work by modeling the manifold on which
the training instances lie; this is called Manifold Learning. It relies on the manifold
assumption, also called the manifold hypothesis, which holds that most real-world
high-dimensional datasets lie close to a much lower-dimensional manifold. This
assumption is very often empirically observed.

Once again, think about the MNIST dataset: all handwritten digit images have some
similarities. They are made of connected lines, the borders are white, they are more
or less centered, and so on. If you randomly generated images, only a ridiculously
tiny fraction of them would look like handwritten digits. In other words, the degrees
of freedom available to you if you try to create a digit image are dramatically lower
than the degrees of freedom you would have if you were allowed to generate any
image you wanted. These constraints tend to squeeze the dataset into a lower-
dimensional manifold.

The manifold assumption is often accompanied by another implicit assumption: that
the task at hand (e.g., classification or regression) will be simpler if expressed in the
lower-dimensional space of the manifold. For example, in the top row of Figure 8-6
the Swiss roll is split into two classes: in the 3D space (on the left), the decision
boundary would be fairly complex, but in the 2D unrolled manifold space (on the
right), the decision boundary is a simple straight line.

However, this assumption does not always hold. For example, in the bottom row of
Figure 8-6, the decision boundary is located at x;, = 5. This decision boundary looks
very simple in the original 3D space (a vertical plane), but it looks more complex in
the unrolled manifold (a collection of four independent line segments).

In short, if you reduce the dimensionality of your training set before training a
model, it will definitely speed up training, but it may not always lead to a better or
simpler solution; it all depends on the dataset.

Hopefully you now have a good sense of what the curse of dimensionality is and how
dimensionality reduction algorithms can fight it, especially when the manifold
assumption holds. The rest of this chapter will go through some of the most popular
algorithms.
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Figure 8-6. The decision boundary may not always be simpler with lower dimensions

PCA

Principal Component Analysis (PCA) is by far the most popular dimensionality reduc-
tion algorithm. First it identifies the hyperplane that lies closest to the data, and then
it projects the data onto it.

Preserving the Variance

Before you can project the training set onto a lower-dimensional hyperplane, you
first need to choose the right hyperplane. For example, a simple 2D dataset is repre-
sented on the left of Figure 8-7, along with three different axes (i.e., one-dimensional
hyperplanes). On the right is the result of the projection of the dataset onto each of
these axes. As you can see, the projection onto the solid line preserves the maximum
variance, while the projection onto the dotted line preserves very little variance, and
the projection onto the dashed line preserves an intermediate amount of variance.
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Figure 8-7. Selecting the subspace onto which to project

It seems reasonable to select the axis that preserves the maximum amount of var-
iance, as it will most likely lose less information than the other projections. Another
way to justify this choice is that it is the axis that minimizes the mean squared dis-
tance between the original dataset and its projection onto that axis. This is the rather
simple idea behind PCA.*

Principal Components

PCA identifies the axis that accounts for the largest amount of variance in the train-
ing set. In Figure 8-7, it is the solid line. It also finds a second axis, orthogonal to the
first one, that accounts for the largest amount of remaining variance. In this 2D
example there is no choice: it is the dotted line. If it were a higher-dimensional data-
set, PCA would also find a third axis, orthogonal to both previous axes, and a fourth,
a fifth, and so on—as many axes as the number of dimensions in the dataset.

The unit vector that defines the i axis is called the i principal component (PC). In
Figure 8-7, the 1** PC is ¢, and the 2™ PC is c,. In Figure 8-2 the first two PCs are
represented by the orthogonal arrows in the plane, and the third PC would be
orthogonal to the plane (pointing up or down).

4 “On Lines and Planes of Closest Fit to Systems of Points in Space;” K. Pearson (1901).
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The direction of the principal components is not stable: if you per-
turb the training set slightly and run PCA again, some of the new
PCs may point in the opposite direction of the original PCs. How-
ever, they will generally still lie on the same axes. In some cases, a
pair of PCs may even rotate or swap, but the plane they define will
generally remain the same.

So how can you find the principal components of a training set? Luckily, there is a
standard matrix factorization technique called Singular Value Decomposition (SVD)
that can decompose the training set matrix X into the dot product of three matrices U
- 2 - VT, where VT contains all the principal components that we are looking for, as
shown in Equation 8-1.

Equation 8-1. Principal components matrix

T
Vio=|cp ¢y r ¢y

The following Python code uses NumPy’s svd() function to obtain all the principal
components of the training set, then extracts the first two PCs:

X_centered = X - X.mean(axis=0)

U, s, V = np.linalg.svd(X_centered)
cl = V.T[:, 0]

c2 = V.T[:, 1]

PCA assumes that the dataset is centered around the origin. As we
will see, Scikit-Learn’s PCA classes take care of centering the data
for you. However, if you implement PCA yourself (as in the pre-

\ ceding example), or if you use other libraries, don't forget to center
the data first.

Projecting Down to d Dimensions

Once you have identified all the principal components, you can reduce the dimen-
sionality of the dataset down to d dimensions by projecting it onto the hyperplane
defined by the first d principal components. Selecting this hyperplane ensures that the
projection will preserve as much variance as possible. For example, in Figure 8-2 the
3D dataset is projected down to the 2D plane defined by the first two principal com-
ponents, preserving a large part of the dataset’s variance. As a result, the 2D projec-
tion looks very much like the original 3D dataset.

To project the training set onto the hyperplane, you can simply compute the dot
product of the training set matrix X by the matrix W, defined as the matrix contain-
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ing the first d principal components (i.e., the matrix composed of the first d columns
of VT), as shown in Equation 8-2.

Equation 8-2. Projecting the training set down to d dimensions

Xd—proj =X-Wy

The following Python code projects the training set onto the plane defined by the first
two principal components:

W2 = V.T[:, :2]
X2D = X_centered.dot(W2)

There you have it! You now know how to reduce the dimensionality of any dataset
down to any number of dimensions, while preserving as much variance as possible.

Using Scikit-Learn

Scikit-Learn’s PCA class implements PCA using SVD decomposition just like we did
before. The following code applies PCA to reduce the dimensionality of the dataset
down to two dimensions (note that it automatically takes care of centering the data):

from import PCA

PCA(n_components = 2)
pca.fit_transform(X)

pca
X2D

After fitting the PCA transformer to the dataset, you can access the principal compo-
nents using the components_ variable (note that it contains the PCs as horizontal vec-
tors, so, for example, the first principal component is equal to pca.components_.T[:,

o).

Explained Variance Ratio

Another very useful piece of information is the explained variance ratio of each prin-
cipal component, available via the explained_variance_ratio_ variable. It indicates
the proportion of the dataset’s variance that lies along the axis of each principal com-
ponent. For example, let’s look at the explained variance ratios of the first two compo-
nents of the 3D dataset represented in Figure 8-2:

>>> print(pca.explained_variance_ratio_)

array([ 0.84248607, 0.14631839])
This tells you that 84.2% of the dataset’s variance lies along the first axis, and 14.6%
lies along the second axis. This leaves less than 1.2% for the third axis, so it is reason-
able to assume that it probably carries little information.
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Choosing the Right Number of Dimensions

Instead of arbitrarily choosing the number of dimensions to reduce down to, it is
generally preferable to choose the number of dimensions that add up to a sufficiently
large portion of the variance (e.g., 95%). Unless, of course, you are reducing dimen-
sionality for data visualization—in that case you will generally want to reduce the
dimensionality down to 2 or 3.

The following code computes PCA without reducing dimensionality, then computes
the minimum number of dimensions required to preserve 95% of the training set’s
variance:

pca = PCA()

pca.fit(X)

cumsum = np.cumsum(pca.explained_variance_ratio_)

d = np.argmax(cumsum >= 0.95) + 1

You could then set n_components=d and run PCA again. However, there is a much
better option: instead of specifying the number of principal components you want to
preserve, you can set n_components to be a float between 0.0 and 1.0, indicating the
ratio of variance you wish to preserve:

pca = PCA(n_components=0.95)

X_reduced = pca.fit_transform(X)
Yet another option is to plot the explained variance as a function of the number of
dimensions (simply plot cumsum; see Figure 8-8). There will usually be an elbow in the
curve, where the explained variance stops growing fast. You can think of this as the
intrinsic dimensionality of the dataset. In this case, you can see that reducing the
dimensionality down to about 100 dimensions wouldn't lose too much explained var-
iance.

Figure 8-8. Explained variance as a function of the number of dimensions
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PCA for Compression

Obviously after dimensionality reduction, the training set takes up much less space.
For example, try applying PCA to the MNIST dataset while preserving 95% of its var-
iance. You should find that each instance will have just over 150 features, instead of
the original 784 features. So while most of the variance is preserved, the dataset is
now less than 20% of its original size! This is a reasonable compression ratio, and you
can see how this can speed up a classification algorithm (such as an SVM classifier)
tremendously.

It is also possible to decompress the reduced dataset back to 784 dimensions by
applying the inverse transformation of the PCA projection. Of course this won't give
you back the original data, since the projection lost a bit of information (within the
5% variance that was dropped), but it will likely be quite close to the original data.
The mean squared distance between the original data and the reconstructed data
(compressed and then decompressed) is called the reconstruction error. For example,
the following code compresses the MNIST dataset down to 154 dimensions, then uses
the inverse_transform() method to decompress it back to 784 dimensions.
Figure 8-9 shows a few digits from the original training set (on the left), and the cor-
responding digits after compression and decompression. You can see that there is a
slight image quality loss, but the digits are still mostly intact.

pca = PCA(n_components = 154)
X_mnist_reduced = pca.fit_transform(X_mnist)
X_mnist_recovered = pca.inverse_transform(X_mnist_reduced)

Figure 8-9. MNIST compression preserving 95% of the variance

216 | Chapter 8: Dimensionality Reduction



The equation of the inverse transformation is shown in Equation 8-3.

Equation 8-3. PCA inverse transformation, back to the original number of
dimensions

T

X recovered = Xd—proj Wy

Incremental PCA

One problem with the preceding implementation of PCA is that it requires the whole
training set to fit in memory in order for the SVD algorithm to run. Fortunately,
Incremental PCA (IPCA) algorithms have been developed: you can split the training
set into mini-batches and feed an IPCA algorithm one mini-batch at a time. This is
useful for large training sets, and also to apply PCA online (i.e., on the fly, as new
instances arrive).

The following code splits the MNIST dataset into 100 mini-batches (using NumPy’s
array_split() function) and feeds them to Scikit-Learn’s IncrementalPCA class’® to
reduce the dimensionality of the MNIST dataset down to 154 dimensions (just like
before). Note that you must call the partial_fit() method with each mini-batch
rather than the fit() method with the whole training set:

from import IncrementalPCA

n_batches = 100

inc_pca = IncrementalPCA(n_components=154)

for X_batch in np.array_split(X_mnist, n_batches):
inc_pca.partial_fit(X_batch)

X_mnist_reduced = inc_pca.transform(X_mnist)

Alternatively, you can use NumPy’s memmap class, which allows you to manipulate a
large array stored in a binary file on disk as if it were entirely in memory; the class
loads only the data it needs in memory, when it needs it. Since the IncrementalPCA
class uses only a small part of the array at any given time, the memory usage remains
under control. This makes it possible to call the usual fit() method, as you can see
in the following code:

X_mm = np.memmap(filename, dtype="float32", mode="readonly", shape=(m, n))

batch_size = m // n_batches
inc_pca = IncrementalPCA(n_components=154, batch_size=batch_size)
inc_pca.fit(X_mm)

5 Scikit-Learn uses the algorithm described in “Incremental Learning for Robust Visual Tracking,” D. Ross et al.
(2007).
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Randomized PCA

Scikit-Learn offers yet another option to perform PCA, called Randomized PCA. This
is a stochastic algorithm that quickly finds an approximation of the first d principal
components. Its computational complexity is O(m x d*) + O(d°), instead of O(m x n?)
+ O(n®), so it is dramatically faster than the previous algorithms when d is much

smaller than n.

rnd_pca = PCA(n_components=154, svd_solver="randomized")
X_reduced = rnd_pca.fit_transform(X_mnist)

Kernel PCA

In Chapter 5 we discussed the kernel trick, a mathematical technique that implicitly
maps instances into a very high-dimensional space (called the feature space), enabling
nonlinear classification and regression with Support Vector Machines. Recall that a
linear decision boundary in the high-dimensional feature space corresponds to a
complex nonlinear decision boundary in the original space.

It turns out that the same trick can be applied to PCA, making it possible to perform
complex nonlinear projections for dimensionality reduction. This is called Kernel
PCA (kPCA).° It is often good at preserving clusters of instances after projection, or
sometimes even unrolling datasets that lie close to a twisted manifold.

For example, the following code uses Scikit-Learn’s KernelPCA class to perform kPCA
with an RBF kernel (see Chapter 5 for more details about the RBF kernel and the
other kernels):

from import KernelPCA

rbf_pca = KernelPCA(n_components = 2, kernel="rbf", gamma=0.04)

X_reduced = rbf_pca.fit_transform(X)
Figure 8-10 shows the Swiss roll, reduced to two dimensions using a linear kernel
(equivalent to simply using the PCA class), an RBF kernel, and a sigmoid kernel
(Logistic).

6 “Kernel Principal Component Analysis,” B. Scholkopf, A. Smola, K. Miiller (1999).
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Figure 8-10. Swiss roll reduced to 2D using kPCA with various kernels

Selecting a Kernel and Tuning Hyperparameters

As kPCA is an unsupervised learning algorithm, there is no obvious performance
measure to help you select the best kernel and hyperparameter values. However,
dimensionality reduction is often a preparation step for a supervised learning task
(e.g., classification), so you can simply use grid search to select the kernel and hyper-
parameters that lead to the best performance on that task. For example, the following
code creates a two-step pipeline, first reducing dimensionality to two dimensions
using kPCA, then applying Logistic Regression for classification. Then it uses Grid
SearchCV to find the best kernel and gamma value for kPCA in order to get the best
classification accuracy at the end of the pipeline:

from import GridSearchCVv
from import LogisticRegression
from import Pipeline

clf = Pipeline([
("kpca", KernelPCA(n_components=2)),
("log_reg", LogisticRegression())

D

param_grid = [{
"kpca__gamma": np.linspace(0.03, 0.05, 10),
"kpca__kernel": ["rbf", "sigmoid"]
H

grid_search = GridSearchCV(clf, param_grid, cv=3)
grid_search.fit(X, y)

The best kernel and hyperparameters are then available through the best_params_
variable:

>>> print(grid_search.best_params_)
{'kpca__gamma': 0.043333333333333335, 'kpca__kernel': 'rbf'}
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Another approach, this time entirely unsupervised, is to select the kernel and hyper-
parameters that yield the lowest reconstruction error. However, reconstruction is not
as easy as with linear PCA. Here’s why. Figure 8-11 shows the original Swiss roll 3D
dataset (top left), and the resulting 2D dataset after kPCA is applied using an RBF
kernel (top right). Thanks to the kernel trick, this is mathematically equivalent to
mapping the training set to an infinite-dimensional feature space (bottom right)
using the feature map @, then projecting the transformed training set down to 2D
using linear PCA. Notice that if we could invert the linear PCA step for a given
instance in the reduced space, the reconstructed point would lie in feature space, not
in the original space (e.g., like the one represented by an x in the diagram). Since the
feature space is infinite-dimensional, we cannot compute the reconstructed point,
and therefore we cannot compute the true reconstruction error. Fortunately, it is pos-
sible to find a point in the original space that would map close to the reconstructed
point. This is called the reconstruction pre-image. Once you have this pre-image, you
can measure its squared distance to the original instance. You can then select the ker-
nel and hyperparameters that minimize this reconstruction pre-image error.

Figure 8-11. Kernel PCA and the reconstruction pre-image error
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You may be wondering how to perform this reconstruction. One solution is to train a
supervised regression model, with the projected instances as the training set and the
original instances as the targets. Scikit-Learn will do this automatically if you set
fit_inverse_transform=True, as shown in the following code:’

rbf_pca = KernelPCA(n_components = 2, kernel="rbf", gamma=0.0433,
fit_inverse_transform=True)

X_reduced = rbf_pca.fit_transform(X)

X_preimage = rbf_pca.inverse_transform(X_reduced)

By default, fit_inverse_transform=False and KernelPCA has no
inverse_transform() method. This method only gets created
when you set fit_inverse_transform=True.

You can then compute the reconstruction pre-image error:

>>> from import mean_squared_error
>>> mean_squared_error(X, X_preimage)
32.786308795766132

Now you can use grid search with cross-validation to find the kernel and hyperpara-
meters that minimize this pre-image reconstruction error.

LLE

Locally Linear Embedding (LLE)® is another very powerful nonlinear dimensionality
reduction (NLDR) technique. It is a Manifold Learning technique that does not rely
on projections like the previous algorithms. In a nutshell, LLE works by first measur-
ing how each training instance linearly relates to its closest neighbors (c.n.), and then
looking for a low-dimensional representation of the training set where these local
relationships are best preserved (more details shortly). This makes it particularly
good at unrolling twisted manifolds, especially when there is not too much noise.

For example, the following code uses Scikit-Learn’s LocallyLinearEmbedding class to
unroll the Swiss roll. The resulting 2D dataset is shown in Figure 8-12. As you can
see, the Swiss roll is completely unrolled and the distances between instances are
locally well preserved. However, distances are not preserved on a larger scale: the left
part of the unrolled Swiss roll is squeezed, while the right part is stretched. Neverthe-
less, LLE did a pretty good job at modeling the manifold.

7 Scikit-Learn uses the algorithm based on Kernel Ridge Regression described in Gokhan H. Bakur, Jason
Weston, and Bernhard Scholkopf, “Learning to Find Pre-images” (Tubingen, Germany: Max Planck Institute
for Biological Cybernetics, 2004).

8 “Nonlinear Dimensionality Reduction by Locally Linear Embedding;” S. Roweis, L. Saul (2000).
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from import LocallyLinearEmbedding

1le = LocallyLinearEmbedding(n_components=2, n_neighbors=10)
X_reduced = 1lle.fit_transform(X)

Figure 8-12. Unrolled Swiss roll using LLE

Here’s how LLE works: first, for each training instance x, the algorithm identifies its
k closest neighbors (in the preceding code k = 10), then tries to reconstruct x” as a
linear function of these neighbors. More specifically, it finds the weights w;; such that
the squared distance between x” and ZT: Wi jx(]) is as small as possible, assuming
w;; = 0 if X7 is not one of the k closest neighbors of x?. Thus the first step of LLE is
the constrained optimization problem described in Equation 8-4, where W is the
weight matrix containing all the weights w; . The second constraint simply normalizes
the weights for each training instance x.
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Equation 8-4. LLE step 1: linearly modeling local relationships

2

N m om .
W = argmin ) || V- ¥ w, x) I
W i= j=1 %

W= 0 it x) is not one of the k c.n. of x\”

subject to { m
X w,=1fori=12-m
j=1 %

After this step, the weight matrix W (containing the weights w; P) encodes the local
linear relationships between the training instances. Now the second step is to map the
training instances into a d-dimensional space (where d < n) while preserving these
local relationships as much as possible. If z@ is the image of x” in this d-dimensional
space, then we want the squared distance between z” and 2;71: 1@', jz(J ) to be as small
as possible. This idea leads to the unconstrained optimization problem described in
Equation 8-5. It looks very similar to the first step, but instead of keeping the instan-
ces fixed and finding the optimal weights, we are doing the reverse: keeping the
weights fixed and finding the optimal position of the instances’ images in the low-
dimensional space. Note that Z is the matrix containing all z%.

Equation 8-5. LLE step 2: reducing dimensionality while preserving relationships

. m oom L2
Z = argmin ), || P W, 20) |
7 i=1 j=1

Scikit-Learn’s LLE implementation has the following computational complexity:
O(m log(m)n log(k)) for finding the k nearest neighbors, O(mnk?®) for optimizing the
weights, and O(dm?) for constructing the low-dimensional representations. Unfortu-
nately, the m? in the last term makes this algorithm scale poorly to very large datasets.

Other Dimensionality Reduction Techniques

There are many other dimensionality reduction techniques, several of which are
available in Scikit-Learn. Here are some of the most popular:

o Multidimensional Scaling (MDS) reduces dimensionality while trying to preserve
the distances between the instances (see Figure 8-13).
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o Isomap creates a graph by connecting each instance to its nearest neighbors, then

reduces dimensionality while trying to preserve the geodesic distances® between
the instances.

t-Distributed Stochastic Neighbor Embedding (t-SNE) reduces dimensionality
while trying to keep similar instances close and dissimilar instances apart. It is
mostly used for visualization, in particular to visualize clusters of instances in
high-dimensional space (e.g., to visualize the MNIST images in 2D).

Linear Discriminant Analysis (LDA) is actually a classification algorithm, but dur-
ing training it learns the most discriminative axes between the classes, and these
axes can then be used to define a hyperplane onto which to project the data. The
benefit is that the projection will keep classes as far apart as possible, so LDA is a
good technique to reduce dimensionality before running another classification
algorithm such as an SVM classifier.

Figure 8-13. Reducing the Swiss roll to 2D using various techniques

Exercises

. What are the main motivations for reducing a dataset’s dimensionality? What are

the main drawbacks?

. What is the curse of dimensionality?

. Once a dataset’s dimensionality has been reduced, is it possible to reverse the

operation? If so, how? If not, why?

Can PCA be used to reduce the dimensionality of a highly nonlinear dataset?

5. Suppose you perform PCA on a 1,000-dimensional dataset, setting the explained

variance ratio to 95%. How many dimensions will the resulting dataset have?

9 The geodesic distance between two nodes in a graph is the number of nodes on the shortest path between
these nodes.
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6. In what cases would you use vanilla PCA, Incremental PCA, Randomized PCA,
or Kernel PCA?

7. How can you evaluate the performance of a dimensionality reduction algorithm
on your dataset?

8. Does it make any sense to chain two different dimensionality reduction algo-
rithms?

9. Load the MNIST dataset (introduced in Chapter 3) and split it into a training set
and a test set (take the first 60,000 instances for training, and the remaining
10,000 for testing). Train a Random Forest classifier on the dataset and time how
long it takes, then evaluate the resulting model on the test set. Next, use PCA to
reduce the dataset’s dimensionality, with an explained variance ratio of 95%.
Train a new Random Forest classifier on the reduced dataset and see how long it
takes. Was training much faster? Next evaluate the classifier on the test set: how
does it compare to the previous classifier?

10. Use t-SNE to reduce the MNIST dataset down to two dimensions and plot the
result using Matplotlib. You can use a scatterplot using 10 different colors to rep-
resent each image’s target class. Alternatively, you can write colored digits at the
location of each instance, or even plot scaled-down versions of the digit images
themselves (if you plot all digits, the visualization will be too cluttered, so you
should either draw a random sample or plot an instance only if no other instance
has already been plotted at a close distance). You should get a nice visualization
with well-separated clusters of digits. Try using other dimensionality reduction
algorithms such as PCA, LLE, or MDS and compare the resulting visualizations.

Solutions to these exercises are available in Appendix A.
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PART I

Neural Networks and Deep Learning






CHAPTER9
Up and Running with TensorFlow

TensorFlow is a powerful open source software library for numerical computation,
particularly well suited and fine-tuned for large-scale Machine Learning. Its basic
principle is simple: you first define in Python a graph of computations to perform
(for example, the one in Figure 9-1), and then TensorFlow takes that graph and runs
it efficiently using optimized C++ code.

Figure 9-1. A simple computation graph

Most importantly, it is possible to break up the graph into several chunks and run
them in parallel across multiple CPUs or GPUs (as shown in Figure 9-2). TensorFlow
also supports distributed computing, so you can train colossal neural networks on
humongous training sets in a reasonable amount of time by splitting the computa-
tions across hundreds of servers (see Chapter 12). TensorFlow can train a network
with millions of parameters on a training set composed of billions of instances with
millions of features each. This should come as no surprise, since TensorFlow was
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developed by the Google Brain team and it powers many of Google’s large-scale serv-
ices, such as Google Cloud Speech, Google Photos, and Google Search.

Figure 9-2. Parallel computation on multiple CPUs/GPUs/servers

When TensorFlow was open-sourced in November 2015, there were already many
popular open source libraries for Deep Learning (Table 9-1 lists a few), and to be fair
most of TensorFlow’s features already existed in one library or another. Nevertheless,
TensorFlow’s clean design, scalability, flexibility,' and great documentation (not to
mention Google’s name) quickly boosted it to the top of the list. In short, TensorFlow
was designed to be flexible, scalable, and production-ready, and existing frameworks
arguably hit only two out of the three of these. Here are some of TensorFlow’s high-
lights:

o It runs not only on Windows, Linux, and macOS, but also on mobile devices,
including both iOS and Android.

1 TensorFlow is not limited to neural networks or even Machine Learning; you could run quantum physics sim-
ulations if you wanted.
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o It provides a very simple Python API called TFLearn®> (tensorflow.con
trib.learn), compatible with Scikit-Learn. As you will see, you can use it to
train various types of neural networks in just a few lines of code. It was previ-
ously an independent project called Scikit Flow (or skflow).

o It also provides another simple API called TF-slim (tensorflow.contrib.slim)
to simplify building, training, and evaluating neural networks.

« Several other high-level APIs have been built independently on top of Tensor-
Flow, such as Keras or Pretty Tensor.

o Its main Python API offers much more flexibility (at the cost of higher complex-
ity) to create all sorts of computations, including any neural network architecture
you can think of.

o It includes highly efficient C++ implementations of many ML operations, partic-
ularly those needed to build neural networks. There is also a C++ API to define
your own high-performance operations.

o It provides several advanced optimization nodes to search for the parameters that
minimize a cost function. These are very easy to use since TensorFlow automati-
cally takes care of computing the gradients of the functions you define. This is
called automatic differentiating (or autodiff).

o It also comes with a great visualization tool called TensorBoard that allows you to
browse through the computation graph, view learning curves, and more.

+ Google also launched a cloud service to run TensorFlow graphs.

o Last but not least, it has a dedicated team of passionate and helpful developers,
and a growing community contributing to improving it. It is one of the most
popular open source projects on GitHub, and more and more great projects are
being built on top of it (for examples, check out the resources page on https://
www.tensorflow.org/, or https://github.com/jtoy/awesome-tensorflow). To ask
technical questions, you should use http://stackoverflow.com/ and tag your ques-
tion with "tensorflow". You can file bugs and feature requests through GitHub.
For general discussions, join the Google group.

In this chapter, we will go through the basics of TensorFlow, from installation to cre-
ating, running, saving, and visualizing simple computational graphs. Mastering these
basics is important before you build your first neural network (which we will do in
the next chapter).

2 Not to be confused with the TFLearn library, which is an independent project.
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Table 9-1. Open source Deep Learning libraries (not an exhaustive list)

Library | Platforms Started by Year
(affe Python, C(++, Matlab  Linux, mac0S, Windows Y. Jia, UC Berkeley (BVLC) 2013
Deeplearning4j Java, Scala, Clojure  Linux, mac0S, Windows, Android A. Gibson, J.Patterson 2014
H20 Python, R Linux, mac0S, Windows H20.ai 2014
MXNet Python, (++, others  Linux, macOS, Windows, i0S, Android  DMLC 2015
TensorFlow Python, (++ Linux, mac0S, Windows, i0S, Android ~ Google 2015
Theano Python Linux, mac0s, i0S University of Montreal 2010
Torch (++, Lua Linux, mac0S, i0S, Android R. Collobert, K. Kavukcuoglu, C. 2002
Farabet
Installation

Let’s get started! Assuming you installed Jupyter and Scikit-Learn by following the
installation instructions in Chapter 2, you can simply use pip to install TensorFlow. If
you created an isolated environment using virtualenv, you first need to activate it:

$ cd SML_PATH # Your ML working directory (e.g., $HOME/ml)
$ source env/bin/activate

Next, install TensorFlow:

$ pip3 install --upgrade tensorflow

For GPU support, you need to install tensorflow-gpu instead of
tensorflow. See Chapter 12 for more details.

To test your installation, type the following command. It should output the version of
TensorFlow you installed.

$ python3 -c 'import tensorflow; print(tensorflow.__version__)'
1.0.0

Creating Your First Graph and Running It in a Session

The following code creates the graph represented in Figure 9-1:

import tensorflow as tf

x = tf.variable(3, name="x")
tf.variable(4, name="y")
X*X*y +y + 2

y
f
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That’s all there is to it! The most important thing to understand is that this code does
not actually perform any computation, even though it looks like it does (especially the
last line). It just creates a computation graph. In fact, even the variables are not ini-
tialized yet. To evaluate this graph, you need to open a TensorFlow session and use it
to initialize the variables and evaluate f. A TensorFlow session takes care of placing
the operations onto devices such as CPUs and GPUs and running them, and it holds
all the variable values.’ The following code creates a session, initializes the variables,
and evaluates, and f then closes the session (which frees up resources):

>>> sess = tf.Session()

>>> sess.run(x.initializer)
>>> sess.run(y.initializer)
>>> result = sess.run(f)
>>> print(result)

42

>>> sess.close()

Having to repeat sess.run() all the time is a bit cumbersome, but fortunately there is
a better way:

with tf.Session() as sess:
x.initializer.run()
y.initializer.run()
result = f.eval()

Inside the with block, the session is set as the default session. Calling x.initial
izer.run() is equivalent to calling tf.get_default_session().run(x.initial
izer), and similarly f.eval() is equivalent to calling

tf.get_default_session().run(f). This makes the code easier to read. Moreover,
the session is automatically closed at the end of the block.

Instead of manually running the initializer for every single variable, you can use the
global_variables_initializer() function. Note that it does not actually perform
the initialization immediately, but rather creates a node in the graph that will initialize
all variables when it is run:

init = tf.global_variables_initializer() # prepare an init node

with tf.Session() as sess:
init.run() # actually initialize all the variables
result = f.eval()
Inside Jupyter or within a Python shell you may prefer to create an InteractiveSes
sion. The only difference from a regular Session is that when an InteractiveSes
sion is created it automatically sets itself as the default session, so you don't need a

3 In distributed TensorFlow, variable values are stored on the servers instead of the session, as we will see in
Chapter 12.
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with block (but you do need to close the session manually when you are done with
it):

>>> sess = tf.InteractiveSession()

>>> init.run()

>>> result = f.eval()

>>> print(result)

42
>>> sess.close()

A TensorFlow program is typically split into two parts: the first part builds a compu-
tation graph (this is called the construction phase), and the second part runs it (this is
the execution phase). The construction phase typically builds a computation graph
representing the ML model and the computations required to train it. The execution
phase generally runs a loop that evaluates a training step repeatedly (for example, one
step per mini-batch), gradually improving the model parameters. We will go through
an example shortly.

Managing Graphs
Any node you create is automatically added to the default graph:

>>> x1 = tf.vVariable(1)
>>> x1.graph is tf.get_default_graph()
True

In most cases this is fine, but sometimes you may want to manage multiple independ-
ent graphs. You can do this by creating a new Graph and temporarily making it the
default graph inside a with block, like so:

>>> graph = tf.Graph()
>>> with graph.as_default():
x2 = tf.variable(2)

>>> x2.graph is graph

True

>>> x2.graph is tf.get_default_graph()
False

In Jupyter (or in a Python shell), it is common to run the same
commands more than once while you are experimenting. As a
result, you may end up with a default graph containing many
duplicate nodes. One solution is to restart the Jupyter kernel (or
the Python shell), but a more convenient solution is to just reset the
default graph by running tf.reset_default_graph().
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Lifecycle of a Node Value

When you evaluate a node, TensorFlow automatically determines the set of nodes
that it depends on and it evaluates these nodes first. For example, consider the follow-
ing code:

tf.constant(3)

W+ 2

X + 5
X * 3

N < X =
n o

with tf.Session() as sess:
print(y.eval()) # 10
print(z.eval()) # 15
First, this code defines a very simple graph. Then it starts a session and runs the
graph to evaluate y: TensorFlow automatically detects that y depends on w, which
depends on x, so it first evaluates w, then x, then y, and returns the value of y. Finally,
the code runs the graph to evaluate z. Once again, TensorFlow detects that it must
first evaluate w and x. It is important to note that it will not reuse the result of the
previous evaluation of w and x. In short, the preceding code evaluates w and x twice.

All node values are dropped between graph runs, except variable values, which are
maintained by the session across graph runs (queues and readers also maintain some
state, as we will see in Chapter 12). A variable starts its life when its initializer is run,
and it ends when the session is closed.

If you want to evaluate y and z efficiently, without evaluating w and x twice as in the
previous code, you must ask TensorFlow to evaluate both y and z in just one graph
run, as shown in the following code:

with tf.Session() as sess:
y_val, z_val = sess.run([y, z])
print(y_val) # 10
print(z_val) # 15

In single-process TensorFlow, multiple sessions do not share any
state, even if they reuse the same graph (each session would have its
own copy of every variable). In distributed TensorFlow (see Chap-

\ ter 12), variable state is stored on the servers, not in the sessions, so
multiple sessions can share the same variables.

Linear Regression with TensorFlow

TensorFlow operations (also called ops for short) can take any number of inputs and
produce any number of outputs. For example, the addition and multiplication ops
each take two inputs and produce one output. Constants and variables take no input
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(they are called source ops). The inputs and outputs are multidimensional arrays,
called tensors (hence the name “tensor flow”). Just like NumPy arrays, tensors have a
type and a shape. In fact, in the Python API tensors are simply represented by NumPy
ndarrays. They typically contain floats, but you can also use them to carry strings
(arbitrary byte arrays).

In the examples so far, the tensors just contained a single scalar value, but you can of
course perform computations on arrays of any shape. For example, the following code
manipulates 2D arrays to perform Linear Regression on the California housing data-
set (introduced in Chapter 2). It starts by fetching the dataset; then it adds an extra
bias input feature (x, = 1) to all training instances (it does so using NumPy so it runs
immediately); then it creates two TensorFlow constant nodes, X and y, to hold this
data and the targets,* and it uses some of the matrix operations provided by Tensor-
Flow to define theta. These matrix functions—transpose(), matmul(), and
matrix_inverse()—are self-explanatory, but as usual they do not perform any com-
putations immediately; instead, they create nodes in the graph that will perform them
when the graph is run. You may recognize that the definition of theta corresponds to

the Normal Equation (6 = X" - X)' - X" . y; see Chapter 4). Finally, the code creates a
session and uses it to evaluate theta.

import as
from import fetch_california_housing

housing = fetch_california_housing()
m, n = housing.data.shape
housing_data_plus_bias = np.c_[np.ones((m, 1)), housing.data]

X = tf.constant(housing_data_plus_bias, dtype=tf.float32, name="X")

y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
XT = tf.transpose(X)

theta = tf.matmul(tf.matmul(tf.matrix_inverse(tf.matmul(XT, X)), XT), y)

with tf.Session() as sess:
theta_value = theta.eval()
The main benefit of this code versus computing the Normal Equation directly using
NumPy is that TensorFlow will automatically run this on your GPU card if you have
one (provided you installed TensorFlow with GPU support, of course; see Chapter 12
for more details).

4 Note that housing.target is a 1D array, but we need to reshape it to a column vector to compute theta.
Recall that NumPy’s reshape() function accepts -1 (meaning “unspecified”) for one of the dimensions: that
dimension will be computed based on the array’s length and the remaining dimensions.
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Implementing Gradient Descent

Let’s try using Batch Gradient Descent (introduced in Chapter 4) instead of the Nor-
mal Equation. First we will do this by manually computing the gradients, then we will
use TensorFlow’s autodiff feature to let TensorFlow compute the gradients automati-
cally, and finally we will use a couple of TensorFlow’s out-of-the-box optimizers.

When using Gradient Descent, remember that it is important to
first normalize the input feature vectors, or else training may be
much slower. You can do this using TensorFlow, NumPy, Scikit-

\ Learn’s StandardScaler, or any other solution you prefer. The fol-
lowing code assumes that this normalization has already been
done.

Manually Computing the Gradients

The following code should be fairly self-explanatory, except for a few new elements:

o The random_uniform() function creates a node in the graph that will generate a
tensor containing random values, given its shape and value range, much like
NumPy’s rand() function.

+ The assign() function creates a node that will assign a new value to a variable.
In this case, it implements the Batch Gradient Descent step 60t ser) = 6 —
nVMSE(0).

 The main loop executes the training step over and over again (n_epochs times),
and every 100 iterations it prints out the current Mean Squared Error (mse). You
should see the MSE go down at every iteration.

n_epochs = 1000
learning_rate = 0.01

X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
y = tf.constant(housing.target.reshape(-1, 1), dtype=tf.float32, name="y")
theta = tf.variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta")
y_pred = tf.matmul(X, theta, name="predictions")

error =y pred -y

mse = tf.reduce_mean(tf.square(error), name="mse")

gradients = 2/m * tf.matmul(tf.transpose(X), error)

training_op = tf.assign(theta, theta - learning_rate * gradients)

init = tf.global_variables_initializer()

with tf.Session() as sess:
sess.run(init)

for epoch in range(n_epochs):
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if epoch % 100 == 0:
print("Epoch", epoch, "MSE =", mse.eval())
sess.run(training_op)

best_theta = theta.eval()

Using autodiff

The preceding code works fine, but it requires mathematically deriving the gradients
from the cost function (MSE). In the case of Linear Regression, it is reasonably easy,
but if you had to do this with deep neural networks you would get quite a headache:
it would be tedious and error-prone. You could use symbolic differentiation to auto-
matically find the equations for the partial derivatives for you, but the resulting code
would not necessarily be very efficient.

To understand why, consider the function f(x)= exp(exp(exp(x))). If you know calcu-
lus, you can figure out its derivative f{x) = exp(x) x exp(exp(x)) x exp(exp(exp(x))).
If you code f{x) and f1{x) separately and exactly as they appear, your code will not be
as efficient as it could be. A more efficient solution would be to write a function that
first computes exp(x), then exp(exp(x)), then exp(exp(exp(x))), and returns all three.
This gives you f(x) directly (the third term), and if you need the derivative you can
just multiply all three terms and you are done. With the naive approach you would
have had to call the exp function nine times to compute both f{x) and f/{x). With this
approach you just need to call it three times.

It gets worse when your function is defined by some arbitrary code. Can you find the
equation (or the code) to compute the partial derivatives of the following function?
Hint: dont even try.
def my_func(a, b):
z =0
for 1 in range(100):
z =a *np.cos(z + 1) + z * np.sin(b - 1)

return z
Fortunately, TensorFlow’s autodiff feature comes to the rescue: it can automatically
and efficiently compute the gradients for you. Simply replace the gradients = ...
line in the Gradient Descent code in the previous section with the following line, and
the code will continue to work just fine:

gradients = tf.gradients(mse, [theta])[0]

The gradients() function takes an op (in this case mse) and a list of variables (in this
case just theta), and it creates a list of ops (one per variable) to compute the gradi-
ents of the op with regards to each variable. So the gradients node will compute the
gradient vector of the MSE with regards to theta.
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There are four main approaches to computing gradients automatically. They are sum-
marized in Table 9-2. TensorFlow uses reverse-mode autodiff, which is perfect (effi-
cient and accurate) when there are many inputs and few outputs, as is often the case
in neural networks. It computes all the partial derivatives of the outputs with regards
to all the inputs in just n + 1 graph traversals.

outputs

Table 9-2. Main solutions to compute gradients automatically

Technique Nb of graph traversals to Accuracy Supports Comment

compute all gradients arbitrary code
Numerical differentiation e + 1 Low Yes Trivial to implement
Symbolic differentiation ~ N/A High No Builds a very different graph
Forward-mode autodiff e High Yes Uses dual numbers
Reverse-mode autodiff ~ Mgyqpyes + 1 High Yes Implemented by TensorFlow

If you are interested in how this magic works, check out Appendix D.

Using an Optimizer

So TensorFlow computes the gradients for you. But it gets even easier: it also provides
a number of optimizers out of the box, including a Gradient Descent optimizer. You
can simply replace the preceding gradients = ... and training_op = ... lines
with the following code, and once again everything will just work fine:

optimizer = tf.train.GradientDescentOptimizer(learning_rate=1learning_rate)
training_op = optimizer.minimize(mse)
If you want to use a different type of optimizer, you just need to change one line. For
example, you can use a momentum optimizer (which often converges much faster
than Gradient Descent; see Chapter 11) by defining the optimizer like this:

optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
momentum=0.9)

Feeding Data to the Training Algorithm

Let’s try to modify the previous code to implement Mini-batch Gradient Descent. For
this, we need a way to replace X and y at every iteration with the next mini-batch. The
simplest way to do this is to use placeholder nodes. These nodes are special because
they don't actually perform any computation, they just output the data you tell them
to output at runtime. They are typically used to pass the training data to TensorFlow
during training. If you don’t specify a value at runtime for a placeholder, you get an
exception.

To create a placeholder node, you must call the placeholder() function and specify
the output tensor’s data type. Optionally, you can also specify its shape, if you want to
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enforce it. If you specify None for a dimension, it means “any size” For example, the
following code creates a placeholder node A, and also a node B = A + 5. When we
evaluate B, we pass a feed_dict to the eval() method that specifies the value of A.
Note that A must have rank 2 (i.e., it must be two-dimensional) and there must be
three columns (or else an exception is raised), but it can have any number of rows.

>>> A = tf.placeholder(tf.float32, shape=(None, 3))
>>>B =A+5
>>> with tf.Session() as sess:
B_val_1 = B.eval(feed_dict={A: [[1, 2, 311})
B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]11})

>>> print(B_val_1)
[[ 6. 7. 8.1]
>>> print(B_val_2)
[[ 9. 10. 11.]
[ 12. 13. 14.]1]

You can actually feed the output of any operations, not just place-
holders. In this case TensorFlow does not try to evaluate these
operations; it uses the values you feed it.

To implement Mini-batch Gradient Descent, we only need to tweak the existing code

slightly. First change the definition of X and y in the construction phase to make them
placeholder nodes:

X = tf.placeholder(tf.float32, shape=(None, n + 1), name="X")
y = tf.placeholder(tf.float32, shape=(None, 1), name="y")

Then define the batch size and compute the total number of batches:

batch_size = 100
n_batches = int(np.ceil(m / batch_size))

Finally, in the execution phase, fetch the mini-batches one by one, then provide the
value of X and y via the feed_dict parameter when evaluating a node that depends
on either of them.

def fetch_batch(epoch, batch_index, batch_size):
[...] # load the data from disk
return X_batch, y_batch

with tf.Session() as sess:
sess.run(init)

for epoch in range(n_epochs):
for batch_index in range(n_batches):
X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
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best_theta = theta.eval()

We don’t need to pass the value of X and y when evaluating theta
since it does not depend on either of them.

Saving and Restoring Models

Once you have trained your model, you should save its parameters to disk so you can
come back to it whenever you want, use it in another program, compare it to other
models, and so on. Moreover, you probably want to save checkpoints at regular inter-
vals during training so that if your computer crashes during training you can con-
tinue from the last checkpoint rather than start over from scratch.

TensorFlow makes saving and restoring a model very easy. Just create a Saver node at
the end of the construction phase (after all variable nodes are created); then, in the
execution phase, just call its save() method whenever you want to save the model,
passing it the session and path of the checkpoint file:

[...]
theta = tf.variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta")

[...]
init = tf.global_variables_initializer()
saver = tf.train.Saver()

with tf.Session() as sess:
sess.run(init)

for epoch in range(n_epochs):
if epoch % 100 == 0: # checkpoint every 100 epochs
save_path = saver.save(sess, "/tmp/my_model.ckpt")

sess.run(training_op)

best_theta = theta.eval()

save_path = saver.save(sess, "/tmp/my_model_final.ckpt")
Restoring a model is just as easy: you create a Saver at the end of the construction
phase just like before, but then at the beginning of the execution phase, instead of ini-
tializing the variables using the init node, you call the restore() method of the
Saver object:

with tf.Session() as sess:
saver.restore(sess, "/tmp/my_model_final.ckpt")

[...]

Saving and Restoring Models | 241



By default a Saver saves and restores all variables under their own name, but if you
need more control, you can specify which variables to save or restore, and what
names to use. For example, the following Saver will save or restore only the theta
variable under the name weights:

saver = tf.train.Saver({"weights": theta})

Visualizing the Graph and Training Curves Using
TensorBoard

So now we have a computation graph that trains a Linear Regression model using
Mini-batch Gradient Descent, and we are saving checkpoints at regular intervals.
Sounds sophisticated, doesn't it? However, we are still relying on the print() func-
tion to visualize progress during training. There is a better way: enter TensorBoard. If
you feed it some training stats, it will display nice interactive visualizations of these
stats in your web browser (e.g., learning curves). You can also provide it the graph’s
definition and it will give you a great interface to browse through it. This is very use-
ful to identify errors in the graph, to find bottlenecks, and so on.

The first step is to tweak your program a bit so it writes the graph definition and
some training stats—for example, the training error (MSE)—to a log directory that
TensorBoard will read from. You need to use a different log directory every time you
run your program, or else TensorBoard will merge stats from different runs, which
will mess up the visualizations. The simplest solution for this is to include a time-
stamp in the log directory name. Add the following code at the beginning of the pro-
gram:

from import datetime

now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
root_logdir = "tf_logs"
logdir = "{}/run-{}/".format(root_logdir, now)

Next, add the following code at the very end of the construction phase:

tf.summary.scalar('MSE', mse)
tf.summary.FileWriter(logdir, tf.get_default_graph())

mse_summary
file_writer

The first line creates a node in the graph that will evaluate the MSE value and write it
to a TensorBoard-compatible binary log string called a summary. The second line cre-
ates a FileWriter that you will use to write summaries to logfiles in the log directory.
The first parameter indicates the path of the log directory (in this case something like
tf_logs/run-20160906091959/, relative to the current directory). The second
(optional) parameter is the graph you want to visualize. Upon creation, the File
Writer creates the log directory if it does not already exist (and its parent directories
if needed), and writes the graph definition in a binary logtile called an events file.
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Next you need to update the execution phase to evaluate the mse_summary node regu-
larly during training (e.g., every 10 mini-batches). This will output a summary that
you can then write to the events file using the file_writer. Here is the updated code:

[...]
for batch_index in range(n_batches):
X_batch, y_batch = fetch_batch(epoch, batch_index, batch_size)
if batch_index % 10 == 0:
summary_str = mse_summary.eval(feed_dict={X: X_batch, y: y_batch})
step = epoch * n_batches + batch_index
file_writer.add_summary(summary_str, step)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
[...]

Avoid logging training stats at every single training step, as this
would significantly slow down training.

Finally, you want to close the FileWriter at the end of the program:
file_writer.close()

Now run this program: it will create the log directory and write an events file in this
directory, containing both the graph definition and the MSE values. Open up a shell
and go to your working directory, then type 1s -1 tf_logs/run* to list the contents
of the log directory:

$ cd SML_PATH # Your ML working directory (e.g., $HOME/ml)

$ Us -1 tf_logs/run*

total 40

-rw-r--r-- 1 ageron staff 18620 Sep 6 11:10 events.out.tfevents.1472553182.mymac

If you run the program a second time, you should see a second directory in the
tf_logs/ directory:

$ 1s -1 tf_logs/

total 0

drwxr-xr-x 3 ageron staff 102 Sep 6 10:07 run-20160906091959
drwxr-xr-x 3 ageron staff 102 Sep 6 10:22 run-20160906092202

Great! Now it’s time to fire up the TensorBoard server. You need to activate your vir-
tualenv environment if you created one, then start the server by running the tensor

board command, pointing it to the root log directory. This starts the TensorBoard
web server, listening on port 6006 (which is “goog” written upside down):

$ source env/bin/activate

$ tensorboard --logdir tf_logs/

Starting TensorBoard on port 6006

(You can navigate to http://0.0.0.0:6006)

Visualizing the Graph and Training Curves Using TensorBoard | 243



Next open a browser and go to http://0.0.0.0:6006/ (or http://localhost:6006/). Wel-
come to TensorBoard! In the Events tab you should see MSE on the right. If you click
on it, you will see a plot of the MSE during training, for both runs (Figure 9-3). You
can check or uncheck the runs you want to see, zoom in or out, hover over the curve
to get details, and so on.

Figure 9-3. Visualizing training stats using TensorBoard

Now click on the Graphs tab. You should see the graph shown in Figure 9-4.

To reduce clutter, the nodes that have many edges (i.e., connections to other nodes)
are separated out to an auxiliary area on the right (you can move a node back and
forth between the main graph and the auxiliary area by right-clicking on it). Some
parts of the graph are also collapsed by default. For example, try hovering over the
gradients node, then click on the @ icon to expand this subgraph. Next, in this sub-
graph, try expanding the mse_grad subgraph.
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Figure 9-4. Visualizing the graph using TensorBoard

If you want to take a peek at the graph directly within Jupyter, you
can use the show_graph() function available in the notebook for
this chapter. It was originally written by A. Mordvintsev in his great
deepdream tutorial notebook. Another option is to install E. Jang’s
TensorFlow debugger tool which includes a Jupyter extension for
graph visualization (and more).

Name Scopes

When dealing with more complex models such as neural networks, the graph can
easily become cluttered with thousands of nodes. To avoid this, you can create name
scopes to group related nodes. For example, let's modify the previous code to define
the error and mse ops within a name scope called "loss":

with tf.name_scope("loss") as scope:
error = y_pred -y
mse = tf.reduce_mean(tf.square(error), name="mse"

The name of each op defined within the scope is now prefixed with "loss/":

>>> print(error.op.name)
loss/sub

>>> print(mse.op.name)
loss/mse

In TensorBoard, the mse and error nodes now appear inside the loss namespace,
which appears collapsed by default (Figure 9-5).
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Figure 9-5. A collapsed namescope in TensorBoard

Modularity

Suppose you want to create a graph that adds the output of two rectified linear units
(ReLU). A ReLU computes a linear function of the inputs, and outputs the result if it
is positive, and 0 otherwise, as shown in Equation 9-1.

Equation 9-1. Rectified linear unit

hg, (X) = max (X-w +b,0)

The following code does the job, but it’s quite repetitive:

n_features = 3
X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")

wl = tf.
w2 = tf.
b1 = tf.
b2 = tf.
z1 = tf
z2 = tf.
relul =
relu2 =

Variable(tf.random_normal((n_features, 1)), name="weights1")
Variable(tf.random_normal((n_features, 1)), name="weights2")
Variable(0.0, name="bias1")
Variable(0.0, name="bias2")

.add(tf.matmul(X, wl), b1, name="z1")

add(tf.matmul(X, w2), b2, name="z2")

tf.maximum(z1, 0., name="relul")
tf.maximum(z1, 0., name="relu2")

output = tf.add(relul, relu2, name="output")

Such repetitive code is hard to maintain and error-prone (in fact, this code contains a
cut-and-paste error; did you spot it?). It would become even worse if you wanted to
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add a few more ReLUs. Fortunately, TensorFlow lets you stay DRY (Don’t Repeat
Yourself): simply create a function to build a ReLU. The following code creates five
ReLUs and outputs their sum (note that add_n() creates an operation that will com-
pute the sum of a list of tensors):

def relu(X):
w_shape = (int(X.get_shape()[1]), 1)
w = tf.Variable(tf.random_normal(w_shape), name="weights")
b = tf.variable(0.0, name="bias")
z = tf.add(tf.matmul(X, w), b, name="z")
return tf.maximum(z, 0., name="relu")

n_features = 3

X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")

relus = [relu(X) for 1 in range(5)]

output = tf.add_n(relus, name="output")
Note that when you create a node, TensorFlow checks whether its name already
exists, and if it does it appends an underscore followed by an index to make the name
unique. So the first ReLU contains nodes named "weights", "bias", "z", and "relu"
(plus many more nodes with their default name, such as "MatMul"); the second ReLU
contains nodes named "weights_1", "bias_1", and so on; the third ReLU contains
nodes named "weights_2", "bias_2", and so on. TensorBoard identifies such series

and collapses them together to reduce clutter (as you can see in Figure 9-6).

Figure 9-6. Collapsed node series
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Using name scopes, you can make the graph much clearer. Simply move all the con-
tent of the relu() function inside a name scope. Figure 9-7 shows the resulting
graph. Notice that TensorFlow also gives the name scopes unique names by append-
ing _1, _2, and so on.

def relu(X):
with tf.name_scope("relu"):

[...]

Figure 9-7. A clearer graph using name-scoped units

Sharing Variables

If you want to share a variable between various components of your graph, one sim-
ple option is to create it first, then pass it as a parameter to the functions that need it.
For example, suppose you want to control the ReLU threshold (currently hardcoded
to 0) using a shared threshold variable for all ReLUs. You could just create that vari-
able first, and then pass it to the relu() function:

def relu(X, threshold):
with tf.name_scope("relu"):

[...]

return tf.maximum(z, threshold, name="max")

threshold = tf.variable(0.0, name="threshold")

X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = [relu(X, threshold) for i1 in range(5)]

output = tf.add_n(relus, name="output")

This works fine: now you can control the threshold for all ReLUs using the threshold
variable. However, if there are many shared parameters such as this one, it will be
painful to have to pass them around as parameters all the time. Many people create a
Python dictionary containing all the variables in their model, and pass it around to
every function. Others create a class for each module (e.g., a ReLU class using class
variables to handle the shared parameter). Yet another option is to set the shared vari-
able as an attribute of the relu() function upon the first call, like so:
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def relu(X):
with tf.name_scope("relu"):
if not hasattr(relu, "threshold"):
relu.threshold = tf.variable(0.0, name="threshold")
[...]

return tf.maximum(z, relu.threshold, name="max")

TensorFlow offers another option, which may lead to slightly cleaner and more mod-
ular code than the previous solutions.” This solution is a bit tricky to understand at
first, but since it is used a lot in TensorFlow it is worth going into a bit of detail. The
idea is to use the get_variable() function to create the shared variable if it does not
exist yet, or reuse it if it already exists. The desired behavior (creating or reusing) is
controlled by an attribute of the current variable_scope(). For example, the follow-
ing code will create a variable named "relu/threshold" (as a scalar, since shape=(),
and using 0.0 as the initial value):

with tf.variable_scope("relu"):
threshold = tf.get_variable("threshold", shape=(),
initializer=tf.constant_initializer(0.0))

Note that if the variable has already been created by an earlier call to get_varti
able(), this code will raise an exception. This behavior prevents reusing variables by
mistake. If you want to reuse a variable, you need to explicitly say so by setting the

variable scope’s reuse attribute to True (in which case you don't have to specify the
shape or the initializer):

with tf.variable_scope('"relu", reuse=True):
threshold = tf.get_variable("threshold")

This code will fetch the existing "relu/threshold" variable, or raise an exception if it
does not exist or if it was not created using get_variable(). Alternatively, you can

set the reuse attribute to True inside the block by calling the scope’s reuse_vari
ables() method:

with tf.variable_scope('"relu") as scope:
scope.reuse_variables()
threshold = tf.get_variable("threshold")

Once reuse is set to True, it cannot be set back to False within the
block. Moreover, if you define other variable scopes inside this one,
they will automatically inherit reuse=True. Lastly, only variables
created by get_variable() can be reused this way.

5 Creating a ReLU class is arguably the cleanest option, but it is rather heavyweight.
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Now you have all the pieces you need to make the relu() function access the thres
hold variable without having to pass it as a parameter:

def relu(X):
with tf.variable_scope('"relu", reuse=True):
threshold = tf.get_variable("threshold") # reuse existing variable

[...]

return tf.maximum(z, threshold, name="max"

X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
with tf.variable_scope('relu"): # create the variable
threshold = tf.get_variable("threshold", shape=(),
initializer=tf.constant_initializer(0.0))
relus = [relu(X) for relu_index in range(5)]
output = tf.add_n(relus, name="output")

This code first defines the relu() function, then creates the relu/threshold variable
(as a scalar that will later be initialized to 0.0) and builds five ReLUs by calling the
relu() function. The relu() function reuses the relu/threshold variable, and cre-
ates the other ReLU nodes.

Variables created using get_variable() are always named using
the name of their variable_scope as a prefix (e.g., "relu/thres
hold"), but for all other nodes (including variables created with
tf.variable()) the variable scope acts like a new name scope. In
particular, if a name scope with an identical name was already cre-
ated, then a suffix is added to make the name unique. For example,
all nodes created in the preceding code (except the threshold vari-
able) have a name prefixed with "relu_1/" to "relu_5/", as shown
in Figure 9-8.

Figure 9-8. Five ReLUs sharing the threshold variable

It is somewhat unfortunate that the threshold variable must be defined outside the
relu() function, where all the rest of the ReLU code resides. To fix this, the following
code creates the threshold variable within the relu() function upon the first call,
then reuses it in subsequent calls. Now the relu() function does not have to worry
about name scopes or variable sharing: it just calls get_variable(), which will create
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or reuse the threshold variable (it does not need to know which is the case). The rest
of the code calls relu() five times, making sure to set reuse=False on the first call,
and reuse=True for the other calls.

def relu(X):
threshold = tf.get_variable("threshold", shape=(),
initializer=tf.constant_initializer(0.0))
[...]

return tf.maximum(z, threshold, name="max")

X = tf.placeholder(tf.float32, shape=(None, n_features), name="X")
relus = []
for relu_index in range(5):
with tf.variable_scope('relu", reuse=(relu_index >= 1)) as scope:
relus.append(relu(X))
output = tf.add_n(relus, name="output")

The resulting graph is slightly different than before, since the shared variable lives
within the first ReLU (see Figure 9-9).

Figure 9-9. Five ReLUs sharing the threshold variable

This concludes this introduction to TensorFlow. We will discuss more advanced top-
ics as we go through the following chapters, in particular many operations related to
deep neural networks, convolutional neural networks, and recurrent neural networks
as well as how to scale up with TensorFlow using multithreading, queues, multiple
GPUs, and multiple servers.

Exercises

1. What are the main benefits of creating a computation graph rather than directly
executing the computations? What are the main drawbacks?

2. Is the statement a_val = a.eval(session=sess) equivalent to a_val =
sess.run(a)?

3. Is the statement a_val, b_val = a.eval(session=sess), b.eval(ses
sion=sess) equivalent to a_val, b_val =sess.run([a, b])?

4. Can you run two graphs in the same session?

Exercises | 251



10.
11.

12.

. If you create a graph g containing a variable w, then start two threads and open a

session in each thread, both using the same graph g, will each session have its
own copy of the variable w or will it be shared?

When is a variable initialized? When is it destroyed?

What is the difference between a placeholder and a variable?

. What happens when you run the graph to evaluate an operation that depends on

a placeholder but you don't feed its value? What happens if the operation does
not depend on the placeholder?

. When you run a graph, can you feed the output value of any operation, or just

the value of placeholders?
How can you set a variable to any value you want (during the execution phase)?

How many times does reverse-mode autodift need to traverse the graph in order
to compute the gradients of the cost function with regards to 10 variables? What
about forward-mode autodiff? And symbolic differentiation?

Implement Logistic Regression with Mini-batch Gradient Descent using Tensor-
Flow. Train it and evaluate it on the moons dataset (introduced in Chapter 5). Try
adding all the bells and whistles:

o Define the graph within a logistic_regression() function that can be reused
easily.

o Save checkpoints using a Saver at regular intervals during training, and save
the final model at the end of training.

« Restore the last checkpoint upon startup if training was interrupted.
« Define the graph using nice scopes so the graph looks good in TensorBoard.
o Add summaries to visualize the learning curves in TensorBoard.

o Try tweaking some hyperparameters such as the learning rate or the mini-
batch size and look at the shape of the learning curve.

Solutions to these exercises are available in Appendix A.
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CHAPTER 10
Introduction to Artificial Neural Networks

Birds inspired us to fly, burdock plants inspired velcro, and nature has inspired many
other inventions. It seems only logical, then, to look at the brain’s architecture for
inspiration on how to build an intelligent machine. This is the key idea that inspired
artificial neural networks (ANNs). However, although planes were inspired by birds,
they don't have to flap their wings. Similarly, ANNs have gradually become quite dif-
ferent from their biological cousins. Some researchers even argue that we should drop
the biological analogy altogether (e.g., by saying “units” rather than “neurons”), lest
we restrict our creativity to biologically plausible systems.*

ANN s are at the very core of Deep Learning. They are versatile, powerful, and scala-
ble, making them ideal to tackle large and highly complex Machine Learning tasks,
such as classifying billions of images (e.g., Google Images), powering speech recogni-
tion services (e.g., Apple’s Siri), recommending the best videos to watch to hundreds
of millions of users every day (e.g., YouTube), or learning to beat the world champion
at the game of Go by examining millions of past games and then playing against itself
(DeepMind’s AlphaGo).

In this chapter, we will introduce artificial neural networks, starting with a quick tour
of the very first ANN architectures. Then we will present Multi-Layer Perceptrons
(MLPs) and implement one using TensorFlow to tackle the MNIST digit classification
problem (introduced in Chapter 3).

1 You can get the best of both worlds by being open to biological inspirations without being afraid to create
biologically unrealistic models, as long as they work well.
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From Biological to Artificial Neurons

Surprisingly, ANNs have been around for quite a while: they were first introduced
back in 1943 by the neurophysiologist Warren McCulloch and the mathematician
Walter Pitts. In their landmark paper,*> “A Logical Calculus of Ideas Immanent in
Nervous Activity, McCulloch and Pitts presented a simplified computational model
of how biological neurons might work together in animal brains to perform complex
computations using propositional logic. This was the first artificial neural network
architecture. Since then many other architectures have been invented, as we will see.

The early successes of ANNs until the 1960s led to the widespread belief that we
would soon be conversing with truly intelligent machines. When it became clear that
this promise would go unfulfilled (at least for quite a while), funding flew elsewhere
and ANNSs entered a long dark era. In the early 1980s there was a revival of interest in
ANNs as new network architectures were invented and better training techniques
were developed. But by the 1990s, powerful alternative Machine Learning techniques
such as Support Vector Machines (see Chapter 5) were favored by most researchers,
as they seemed to offer better results and stronger theoretical foundations. Finally, we
are now witnessing yet another wave of interest in ANNs. Will this wave die out like
the previous ones did? There are a few good reasons to believe that this one is differ-
ent and will have a much more profound impact on our lives:

o There is now a huge quantity of data available to train neural networks, and
ANNSs frequently outperform other ML techniques on very large and complex
problems.

o The tremendous increase in computing power since the 1990s now makes it pos-
sible to train large neural networks in a reasonable amount of time. This is in
part due to Moore’s Law, but also thanks to the gaming industry, which has pro-
duced powerful GPU cards by the millions.

o The training algorithms have been improved. To be fair they are only slightly dif-
ferent from the ones used in the 1990s, but these relatively small tweaks have a
huge positive impact.

+ Some theoretical limitations of ANNs have turned out to be benign in practice.
For example, many people thought that ANN training algorithms were doomed
because they were likely to get stuck in local optima, but it turns out that this is
rather rare in practice (or when it is the case, they are usually fairly close to the
global optimum).

o ANNSs seem to have entered a virtuous circle of funding and progress. Amazing
products based on ANNs regularly make the headline news, which pulls more

2 “A Logical Calculus of Ideas Immanent in Nervous Activity,” W. McCulloch and W. Pitts (1943).
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and more attention and funding toward them, resulting in more and more pro-
gress, and even more amazing products.

Biological Neurons

Before we discuss artificial neurons, let’s take a quick look at a biological neuron (rep-
resented in Figure 10-1). It is an unusual-looking cell mostly found in animal cerebral
cortexes (e.g., your brain), composed of a cell body containing the nucleus and most
of the cell's complex components, and many branching extensions called dendrites,
plus one very long extension called the axon. The axon’s length may be just a few
times longer than the cell body, or up to tens of thousands of times longer. Near its
extremity the axon splits off into many branches called telodendria, and at the tip of
these branches are minuscule structures called synaptic terminals (or simply synap-
ses), which are connected to the dendrites (or directly to the cell body) of other neu-
rons. Biological neurons receive short electrical impulses called signals from other
neurons via these synapses. When a neuron receives a sufficient number of signals
from other neurons within a few milliseconds, it fires its own signals.

Figure 10-1. Biological neuron’

Thus, individual biological neurons seem to behave in a rather simple way, but they
are organized in a vast network of billions of neurons, each neuron typically connec-
ted to thousands of other neurons. Highly complex computations can be performed
by a vast network of fairly simple neurons, much like a complex anthill can emerge
from the combined efforts of simple ants. The architecture of biological neural net-

3 Image by Bruce Blaus (Creative Commons 3.0). Reproduced from https://en.wikipedia.org/wiki/Neuron.
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works (BNN)* is still the subject of active research, but some parts of the brain have
been mapped, and it seems that neurons are often organized in consecutive layers, as
shown in Figure 10-2.

Figure 10-2. Multiple layers in a biological neural network (human cortex)’

Logical Computations with Neurons

Warren McCulloch and Walter Pitts proposed a very simple model of the biological
neuron, which later became known as an artificial neuron: it has one or more binary
(on/off) inputs and one binary output. The artificial neuron simply activates its out-
put when more than a certain number of its inputs are active. McCulloch and Pitts
showed that even with such a simplified model it is possible to build a network of
artificial neurons that computes any logical proposition you want. For example, let’s
build a few ANNs that perform various logical computations (see Figure 10-3),
assuming that a neuron is activated when at least two of its inputs are active.

Figure 10-3. ANNs performing simple logical computations

4 In the context of Machine Learning, the phrase “neural networks” generally refers to ANNs, not BNNs.

5 Drawing of a cortical lamination by S. Ramon y Cajal (public domain). Reproduced from https://en.wikipe
dia.org/wiki/Cerebral_cortex.
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o The first network on the left is simply the identity function: if neuron A is activa-
ted, then neuron C gets activated as well (since it receives two input signals from
neuron A), but if neuron A is off, then neuron C is off as well.

o The second network performs a logical AND: neuron C is activated only when
both neurons A and B are activated (a single input signal is not enough to acti-
vate neuron C).

o The third network performs a logical OR: neuron C gets activated if either neu-
ron A or neuron B is activated (or both).

o Finally, if we suppose that an input connection can inhibit the neuron’s activity
(which is the case with biological neurons), then the fourth network computes a
slightly more complex logical proposition: neuron C is activated only if neuron A
is active and if neuron B is off. If neuron A is active all the time, then you get a
logical NOT: neuron C is active when neuron B is off, and vice versa.

You can easily imagine how these networks can be combined to compute complex
logical expressions (see the exercises at the end of the chapter).

The Perceptron

The Perceptron is one of the simplest ANN architectures, invented in 1957 by Frank
Rosenblatt. It is based on a slightly different artificial neuron (see Figure 10-4) called

a linear threshold unit (LTU): the inputs and output are now numbers (instead of
binary on/off values) and each input connection is associated with a weight. The LTU
computes a weighted sum of its inputs (z = w, x; + w, X, + -+ + w, x, = W’ - X), then
applies a step function to that sum and outputs the result: h,(x) = step (z) = step (w” -
X).

Figure 10-4. Linear threshold unit

The most common step function used in Perceptrons is the Heaviside step function
(see Equation 10-1). Sometimes the sign function is used instead.
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Equation 10-1. Common step functions used in Perceptrons

. -1ifz<0
. 0if z<0 )
heaviside (z) ={ . sgn (z) ={0 if z=0
1ifz>20 )
+1if z>0

A single LTU can be used for simple linear binary classification. It computes a linear
combination of the inputs and if the result exceeds a threshold, it outputs the positive
class or else outputs the negative class (just like a Logistic Regression classifier or a
linear SVM). For example, you could use a single LT'U to classify iris flowers based on
the petal length and width (also adding an extra bias feature x, = 1, just like we did in
previous chapters). Training an LTU means finding the right values for w,, w;, and w,
(the training algorithm is discussed shortly).

A Perceptron is simply composed of a single layer of LTUs,® with each neuron con-
nected to all the inputs. These connections are often represented using special pass-
through neurons called input neurons: they just output whatever input they are fed.
Moreover, an extra bias feature is generally added (x, = 1). This bias feature is typi-
cally represented using a special type of neuron called a bias neuron, which just out-
puts 1 all the time.

A Perceptron with two inputs and three outputs is represented in Figure 10-5. This
Perceptron can classify instances simultaneously into three different binary classes,
which makes it a multioutput classifier.

Figure 10-5. Perceptron diagram

So how is a Perceptron trained? The Perceptron training algorithm proposed by
Frank Rosenblatt was largely inspired by Hebb’s rule. In his book The Organization of
Behavior, published in 1949, Donald Hebb suggested that when a biological neuron

6 The name Perceptron is sometimes used to mean a tiny network with a single LTU.
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often triggers another neuron, the connection between these two neurons grows
stronger. This idea was later summarized by Siegrid Lowel in this catchy phrase:
“Cells that fire together, wire together” This rule later became known as Hebb’s rule
(or Hebbian learning); that is, the connection weight between two neurons is
increased whenever they have the same output. Perceptrons are trained using a var-
iant of this rule that takes into account the error made by the network; it does not
reinforce connections that lead to the wrong output. More specifically, the Perceptron
is fed one training instance at a time, and for each instance it makes its predictions.
For every output neuron that produced a wrong prediction, it reinforces the connec-
tion weights from the inputs that would have contributed to the correct prediction.
The rule is shown in Equation 10-2.

Equation 10-2. Perceptron learning rule (weight update)

(next step)

Wi j Wit ’7(?1 - yj)xl.

+ w,; is the connection weight between the i input neuron and the j™ output neu-
ron.

o x;is the i input value of the current training instance.
« »,is the output of the j™ output neuron for the current training instance.
+ y;is the target output of the j" output neuron for the current training instance.

o 1 is the learning rate.

The decision boundary of each output neuron is linear, so Perceptrons are incapable
of learning complex patterns (just like Logistic Regression classifiers). However, if the
training instances are linearly separable, Rosenblatt demonstrated that this algorithm
would converge to a solution.” This is called the Perceptron convergence theorem.

Scikit-Learn provides a Perceptron class that implements a single LTU network. It
can be used pretty much as you would expect—for example, on the iris dataset (intro-
duced in Chapter 4):

import as
from import load_iris
from import Perceptron

iris = load_iris()
X = iris.data[:, (2, 3)] # petal length, petal width
y = (iris.target == 0).astype(np.int) # Iris Setosa?

7 Note that this solution is generally not unique: in general when the data are linearly separable, there is an
infinity of hyperplanes that can separate them.
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per_clf = Perceptron(random_state=42)
per_clf.fit(X, y)

y_pred = per_clf.predict([[2, 0.5]])

You may have recognized that the Perceptron learning algorithm strongly resembles
Stochastic Gradient Descent. In fact, Scikit-Learn’s Perceptron class is equivalent to
using an SCDClassifier with the following hyperparameters: loss="perceptron”,
learning_rate="constant", eta0=1 (the learning rate), and penalty=None (no regu-
larization).

Note that contrary to Logistic Regression classifiers, Perceptrons do not output a class
probability; rather, they just make predictions based on a hard threshold. This is one
of the good reasons to prefer Logistic Regression over Perceptrons.

In their 1969 monograph titled Perceptrons, Marvin Minsky and Seymour Papert
highlighted a number of serious weaknesses of Perceptrons, in particular the fact that
they are incapable of solving some trivial problems (e.g., the Exclusive OR (XOR)
classification problem; see the left side of Figure 10-6). Of course this is true of any
other linear classification model as well (such as Logistic Regression classifiers), but
researchers had expected much more from Perceptrons, and their disappointment
was great: as a result, many researchers dropped connectionism altogether (i.e., the
study of neural networks) in favor of higher-level problems such as logic, problem
solving, and search.

However, it turns out that some of the limitations of Perceptrons can be eliminated by
stacking multiple Perceptrons. The resulting ANN is called a Multi-Layer Perceptron
(MLP). In particular, an MLP can solve the XOR problem, as you can verify by com-
puting the output of the MLP represented on the right of Figure 10-6, for each com-
bination of inputs: with inputs (0, 0) or (1, 1) the network outputs 0, and with inputs
(0, 1) or (1, 0) it outputs 1.

Figure 10-6. XOR classification problem and an MLP that solves it
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Multi-Layer Perceptron and Backpropagation

An MLP is composed of one (passthrough) input layer, one or more layers of LTUs,
called hidden layers, and one final layer of LTUs called the output layer (see
Figure 10-7). Every layer except the output layer includes a bias neuron and is fully
connected to the next layer. When an ANN has two or more hidden layers, it is called
a deep neural network (DNN).

Figure 10-7. Multi-Layer Perceptron

For many years researchers struggled to find a way to train MLPs, without success.
But in 1986, D. E. Rumelhart et al. published a groundbreaking article® introducing
the backpropagation training algorithm.® Today we would describe it as Gradient
Descent using reverse-mode autodiff (Gradient Descent was introduced in Chapter 4,
and autodiff was discussed in Chapter 9).

For each training instance, the algorithm feeds it to the network and computes the
output of every neuron in each consecutive layer (this is the forward pass, just like
when making predictions). Then it measures the network’s output error (i.e., the dif-
ference between the desired output and the actual output of the network), and it
computes how much each neuron in the last hidden layer contributed to each output
neuron’s error. It then proceeds to measure how much of these error contributions
came from each neuron in the previous hidden layer—and so on until the algorithm
reaches the input layer. This reverse pass efficiently measures the error gradient
across all the connection weights in the network by propagating the error gradient
backward in the network (hence the name of the algorithm). If you check out the

8 “Learning Internal Representations by Error Propagation,” D. Rumelhart, G. Hinton, R. Williams (1986).

9 This algorithm was actually invented several times by various researchers in different fields, starting with
P. Werbos in 1974.
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reverse-mode autodiff algorithm in Appendix D, you will find that the forward and
reverse passes of backpropagation simply perform reverse-mode autodiff. The last
step of the backpropagation algorithm is a Gradient Descent step on all the connec-
tion weights in the network, using the error gradients measured earlier.

Let’s make this even shorter: for each training instance the backpropagation algo-
rithm first makes a prediction (forward pass), measures the error, then goes through
each layer in reverse to measure the error contribution from each connection (reverse
pass), and finally slightly tweaks the connection weights to reduce the error (Gradient
Descent step).

In order for this algorithm to work properly, the authors made a key change to the
MLP’s architecture: they replaced the step function with the logistic function, o(z) =
1/ (1 + exp(-2)). This was essential because the step function contains only flat seg-
ments, so there is no gradient to work with (Gradient Descent cannot move on a flat
surface), while the logistic function has a well-defined nonzero derivative every-
where, allowing Gradient Descent to make some progress at every step. The backpro-
pagation algorithm may be used with other activation functions, instead of the logistic
function. Two other popular activation functions are:

The hyperbolic tangent function tanh (z) = 20(2z) - 1
Just like the logistic function it is S-shaped, continuous, and differentiable, but its
output value ranges from -1 to 1 (instead of 0 to 1 in the case of the logistic func-
tion), which tends to make each layer’s output more or less normalized (i.e., cen-
tered around 0) at the beginning of training. This often helps speed up
convergence.

The ReLU function (introduced in Chapter 9)
ReLU (z) = max (0, z). It is continuous but unfortunately not differentiable at z =
0 (the slope changes abruptly, which can make Gradient Descent bounce
around). However, in practice it works very well and has the advantage of being
fast to compute. Most importantly, the fact that it does not have a maximum out-
put value also helps reduce some issues during Gradient Descent (we will come
back to this in Chapter 11).

These popular activation functions and their derivatives are represented in
Figure 10-8.
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Figure 10-8. Activation functions and their derivatives

An MLP is often used for classification, with each output corresponding to a different
binary class (e.g., spam/ham, urgent/not-urgent, and so on). When the classes are
exclusive (e.g., classes 0 through 9 for digit image classification), the output layer is
typically modified by replacing the individual activation functions by a shared soft-
max function (see Figure 10-9). The softmax function was introduced in Chapter 3.
The output of each neuron corresponds to the estimated probability of the corre-
sponding class. Note that the signal flows only in one direction (from the inputs to
the outputs), so this architecture is an example of a feedforward neural network
(FNN).

Figure 10-9. A modern MLP (including ReLU and softmax) for classification
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Biological neurons seem to implement a roughly sigmoid (S-
shaped) activation function, so researchers stuck to sigmoid func-
tions for a very long time. But it turns out that the ReLU activation
function generally works better in ANNs. This is one of the cases
where the biological analogy was misleading.

Training an MLP with TensorFlow’s High-Level API

The simplest way to train an MLP with TensorFlow is to use the high-level API
TELearn, which is quite similar to Scikit-Learn’s API. The DNNClassifier class
makes it trivial to train a deep neural network with any number of hidden layers, and
a softmax output layer to output estimated class probabilities. For example, the fol-
lowing code trains a DNN for classification with two hidden layers (one with 300
neurons, and the other with 100 neurons) and a softmax output layer with 10
neurons:

import as

feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input(X_train)
dnn_clf = tf.contrib.learn.DNNClassifier(hidden_units=[300, 100], n_classes=10,
feature_columns=feature_columns)
dnn_clf.fit(x=X_train, y=y_train, batch_size=50, steps=40000)
If you run this code on the MNIST dataset (after scaling it, e.g., by using Scikit-
Learns StandardScaler), you may actually get a model that achieves over 98.1%
accuracy on the test set! That’s better than the best model we trained in Chapter 3:

>>> from import accuracy_score
>>> y _pred = list(dnn_clf.predict(X_test))

>>> accuracy_score(y_test, y_pred)
0.98180000000000001

The TE Learn library also provides some convenience functions to evaluate models:

>>> dnn_clf.evaluate(X_test, y_test)
{'accuracy': 0.98180002, 'global_step': 40000, 'loss': 0.073678359}

Under the hood, the DNNClassifier class creates all the neuron layers, based on the
ReLU activation function (we can change this by setting the activation_fn hyper-
parameter). The output layer relies on the softmax function, and the cost function is
cross entropy (introduced in Chapter 4).

The TELearn API is still quite new, so some of the names and func-
tions used in these examples may evolve a bit by the time you read
this book. However, the general ideas should not change.
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Training a DNN Using Plain TensorFlow

If you want more control over the architecture of the network, you may prefer to use
TensorFlow’s lower-level Python API (introduced in Chapter 9). In this section we
will build the same model as before using this API, and we will implement Mini-
batch Gradient Descent to train it on the MNIST dataset. The first step is the con-
struction phase, building the TensorFlow graph. The second step is the execution
phase, where you actually run the graph to train the model.

Construction Phase

Let’s start. First we need to import the tensorflow library. Then we must specify the
number of inputs and outputs, and set the number of hidden neurons in each layer:

import as

n_inputs = 28%28 # MNIST

n_hiddenl = 300
n_hidden2 = 100
n_outputs = 10

Next, just like you did in Chapter 9, you can use placeholder nodes to represent the
training data and targets. The shape of X is only partially defined. We know that it will
be a 2D tensor (i.e., a matrix), with instances along the first dimension and features
along the second dimension, and we know that the number of features is going to be
28 x 28 (one feature per pixel), but we don't know yet how many instances each train-
ing batch will contain. So the shape of X is (None, n_inputs). Similarly, we know
that y will be a 1D tensor with one entry per instance, but again we don’t know the
size of the training batch at this point, so the shape is (None).

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")

Now let’s create the actual neural network. The placeholder X will act as the input
layer; during the execution phase, it will be replaced with one training batch at a time
(note that all the instances in a training batch will be processed simultaneously by the
neural network). Now you need to create the two hidden layers and the output layer.
The two hidden layers are almost identical: they differ only by the inputs they are
connected to and by the number of neurons they contain. The output layer is also
very similar, but it uses a softmax activation function instead of a ReLU activation
function. So let’s create a neuron_layer () function that we will use to create one layer
at a time. It will need parameters to specify the inputs, the number of neurons, the
activation function, and the name of the layer:
def neuron_layer(X, n_neurons, name, activation=None):

with tf.name_scope(name):
n_inputs = int(X.get_shape()[1])
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stddev = 2 / np.sqgrt(n_inputs)
init = tf.truncated_normal((n_inputs, n_neurons), stddev=stddev)
W = tf.variable(init, name="weights")
b = tf.variable(tf.zeros([n_neurons]), name="biases")
z = tf.matmul(X, W) + b
if activation=="relu":
return tf.nn.relu(z)
else:
return z

Let’s go through this code line by line:

1. First we create a name scope using the name of the layer: it will contain all the
computation nodes for this neuron layer. This is optional, but the graph will look
much nicer in TensorBoard if its nodes are well organized.

2. Next, we get the number of inputs by looking up the input matrix’s shape and
getting the size of the second dimension (the first dimension is for instances).

3. The next three lines create a W variable that will hold the weights matrix. It will be
a 2D tensor containing all the connection weights between each input and each
neuron; hence, its shape will be (n_inputs, n_neurons). It will be initialized
randomly, using a truncated® normal (Gaussian) distribution with a standard
deviation of 2/, /ninputs. Using this specific standard deviation helps the algorithm
converge much faster (we will discuss this further in Chapter 11; it is one of those
small tweaks to neural networks that have had a tremendous impact on their effi-
ciency). It is important to initialize connection weights randomly for all hidden
layers to avoid any symmetries that the Gradient Descent algorithm would be
unable to break."

4. The next line creates a b variable for biases, initialized to 0 (no symmetry issue in
this case), with one bias parameter per neuron.

5. Then we create a subgraph to compute z = X - W + b. This vectorized implemen-
tation will efficiently compute the weighted sums of the inputs plus the bias term
for each and every neuron in the layer, for all the instances in the batch in just
one shot.

6. Finally, if the activation parameter is set to "relu", the code returns relu(z)
(i.e., max (0, z)), or else it just returns z.

10 Using a truncated normal distribution rather than a regular normal distribution ensures that there won’t be
any large weights, which could slow down training.

11 For example, if you set all the weights to 0, then all neurons will output 0, and the error gradient will be the
same for all neurons in a given hidden layer. The Gradient Descent step will then update all the weights in
exactly the same way in each layer, so they will all remain equal. In other words, despite having hundreds of
neurons per layer, your model will act as if there were only one neuron per layer. It is not going to fly.
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Okay, so now you have a nice function to create a neuron layer. Let’s use it to create
the deep neural network! The first hidden layer takes X as its input. The second takes
the output of the first hidden layer as its input. And finally, the output layer takes the
output of the second hidden layer as its input.

with tf.name_scope("dnn"):
hidden1l = neuron_layer(X, n_hidden1, "hidden1", activation="relu")
hidden2 = neuron_layer(hidden1, n_hidden2, "hidden2", activation="relu")
logits = neuron_layer(hidden2, n_outputs, "outputs")
Notice that once again we used a name scope for clarity. Also note that logits is the
output of the neural network before going through the softmax activation function:
for optimization reasons, we will handle the softmax computation later.

As you might expect, TensorFlow comes with many handy functions to create
standard neural network layers, so there’s often no need to define your own
neuron_layer() function like we just did. For example, TensorFlow’s fully_connec
ted() function creates a fully connected layer, where all the inputs are connected to
all the neurons in the layer. It takes care of creating the weights and biases variables,
with the proper initialization strategy, and it uses the ReLU activation function by
default (we can change this using the activation_fn argument). As we will see in
Chapter 11, it also supports regularization and normalization parameters. Lets tweak
the preceding code to use the fully_connected() function instead of our neu
ron_layer() function. Simply import the function and replace the dnn construction
section with the following code:

from import fully_connected

with tf.name_scope("dnn"):
hidden1l = fully_connected(X, n_hidden1, scope="hidden1")
hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")
logits = fully_connected(hidden2, n_outputs, scope="outputs",
activation_fn=None)

The tensorflow.contrib package contains many useful functions,
but it is a place for experimental code that has not yet graduated to
be part of the main TensorFlow API. So the fully_connected()

\ function (and any other contrib code) may change or move in the
future.

Now that we have the neural network model ready to go, we need to define the cost
function that we will use to train it. Just as we did for Softmax Regression in Chap-
ter 4, we will use cross entropy. As we discussed earlier, cross entropy will penalize
models that estimate a low probability for the target class. TensorFlow provides
several functions to compute cross entropy. We will use sparse_soft

max_cross_entropy_with_logits(): it computes the cross entropy based on the
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“logits” (i.e., the output of the network before going through the softmax activation
function), and it expects labels in the form of integers ranging from 0 to the number
of classes minus 1 (in our case, from 0 to 9). This will give us a 1D tensor containing
the cross entropy for each instance. We can then use TensorFlow’s reduce_mean()
function to compute the mean cross entropy over all instances.

with tf.name_scope("loss"):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y, logits=logits)
loss = tf.reduce_mean(xentropy, name="loss")

The sparse_softmax_cross_entropy_with_logits() function is
equivalent to applying the softmax activation function and then
computing the cross entropy, but it is more efficient, and it prop-
erly takes care of corner cases like logits equal to 0. This is why we
did not apply the softmax activation function earlier. There is also
another function called softmax_cross_entropy_with_logits(),
which takes labels in the form of one-hot vectors (instead of ints
from 0 to the number of classes minus 1).

We have the neural network model, we have the cost function, and now we need to
define a GradientDescentOptimizer that will tweak the model parameters to mini-
mize the cost function. Nothing news; it’s just like we did in Chapter 9:

learning_rate = 0.01

with tf.name_scope("train"):

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

training_op = optimizer.minimize(loss)
The last important step in the construction phase is to specify how to evaluate the
model. We will simply use accuracy as our performance measure. First, for each
instance, determine if the neural networK’s prediction is correct by checking whether
or not the highest logit corresponds to the target class. For this you can use the
in_top_k() function. This returns a 1D tensor full of boolean values, so we need to
cast these booleans to floats and then compute the average. This will give us the net-
work’s overall accuracy.

with tf.name_scope("eval"):
correct = tf.nn.in_top_k(logits, vy, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
And, as usual, we need to create a node to initialize all variables, and we will also cre-
ate a Saver to save our trained model parameters to disk:

init = tf.global_variables_initializer()
saver = tf.train.Saver()

268 | Chapter 10: Introduction to Artificial Neural Networks



Phew! This concludes the construction phase. This was fewer than 40 lines of code,
but it was pretty intense: we created placeholders for the inputs and the targets, we
created a function to build a neuron layer, we used it to create the DNN, we defined
the cost function, we created an optimizer, and finally we defined the performance
measure. Now on to the execution phase.

Execution Phase

This part is much shorter and simpler. First, let’s load MNIST. We could use Scikit-
Learn for that as we did in previous chapters, but TensorFlow offers its own helper
that fetches the data, scales it (between 0 and 1), shuffles it, and provides a simple
function to load one mini-batches a time. So let’s use it instead:

from import input_data
mnist = input_data.read_data_sets("/tmp/data/")

Now we define the number of epochs that we want to run, as well as the size of the
mini-batches:

n_epochs = 400
batch_size = 50

And now we can train the model:

with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
acc_test = accuracy.eval(feed_dict={X: mnist.test.images,
y: mnist.test.labels})
print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

save_path = saver.save(sess, "./my_model_final.ckpt")

This code opens a TensorFlow session, and it runs the init node that initializes all
the variables. Then it runs the main training loop: at each epoch, the code iterates
through a number of mini-batches that corresponds to the training set size. Each
mini-batch is fetched via the next_batch() method, and then the code simply runs
the training operation, feeding it the current mini-batch input data and targets. Next,
at the end of each epoch, the code evaluates the model on the last mini-batch and on
the full training set, and it prints out the result. Finally, the model parameters are
saved to disk.
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Using the Neural Network

Now that the neural network is trained, you can use it to make predictions. To do
that, you can reuse the same construction phase, but change the execution phase like
this:

with tf.Session() as sess:

saver.restore(sess, "./my_model_final.ckpt")

X_new_scaled = [...] # some new images (scaled from 0 to 1)

Z = logits.eval(feed_dict={X: X_new_scaled})

y_pred = np.argmax(Z, axis=1)
First the code loads the model parameters from disk. Then it loads some new images
that you want to classify. Remember to apply the same feature scaling as for the train-
ing data (in this case, scale it from 0 to 1). Then the code evaluates the logits node.
If you wanted to know all the estimated class probabilities, you would need to apply
the softmax () function to the logits, but if you just want to predict a class, you can
simply pick the class that has the highest logit value (using the argmax() function
does the trick).

Fine-Tuning Neural Network Hyperparameters

The flexibility of neural networks is also one of their main drawbacks: there are many
hyperparameters to tweak. Not only can you use any imaginable network topology
(how neurons are interconnected), but even in a simple MLP you can change the
number of layers, the number of neurons per layer, the type of activation function to
use in each layer, the weight initialization logic, and much more. How do you know
what combination of hyperparameters is the best for your task?

Of course, you can use grid search with cross-validation to find the right hyperpara-
meters, like you did in previous chapters, but since there are many hyperparameters
to tune, and since training a neural network on a large dataset takes a lot of time, you
will only be able to explore a tiny part of the hyperparameter space in a reasonable
amount of time. It is much better to use randomized search, as we discussed in Chap-
ter 2. Another option is to use a tool such as Oscar, which implements more complex
algorithms to help you find a good set of hyperparameters quickly.

It helps to have an idea of what values are reasonable for each hyperparameter, so you
can restrict the search space. Let’s start with the number of hidden layers.

Number of Hidden Layers

For many problems, you can just begin with a single hidden layer and you will get
reasonable results. It has actually been shown that an MLP with just one hidden layer
can model even the most complex functions provided it has enough neurons. For a
long time, these facts convinced researchers that there was no need to investigate any
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deeper neural networks. But they overlooked the fact that deep networks have a much
higher parameter efficiency than shallow ones: they can model complex functions
using exponentially fewer neurons than shallow nets, making them much faster to
train.

To understand why, suppose you are asked to draw a forest using some drawing soft-
ware, but you are forbidden to use copy/paste. You would have to draw each tree
individually, branch per branch, leaf per leaf. If you could instead draw one leaf,
copy/paste it to draw a branch, then copy/paste that branch to create a tree, and
finally copy/paste this tree to make a forest, you would be finished in no time. Real-
world data is often structured in such a hierarchical way and DNNs automatically
take advantage of this fact: lower hidden layers model low-level structures (e.g., line
segments of various shapes and orientations), intermediate hidden layers combine
these low-level structures to model intermediate-level structures (e.g., squares, cir-
cles), and the highest hidden layers and the output layer combine these intermediate
structures to model high-level structures (e.g., faces).

Not only does this hierarchical architecture help DNNs converge faster to a good sol-
ution, it also improves their ability to generalize to new datasets. For example, if you
have already trained a model to recognize faces in pictures, and you now want to
train a new neural network to recognize hairstyles, then you can kickstart training by
reusing the lower layers of the first network. Instead of randomly initializing the
weights and biases of the first few layers of the new neural network, you can initialize
them to the value of the weights and biases of the lower layers of the first network.
This way the network will not have to learn from scratch all the low-level structures
that occur in most pictures; it will only have to learn the higher-level structures (e.g.,
hairstyles).

In summary, for many problems you can start with just one or two hidden layers and
it will work just fine (e.g., you can easily reach above 97% accuracy on the MNIST
dataset using just one hidden layer with a few hundred neurons, and above 98% accu-
racy using two hidden layers with the same total amount of neurons, in roughly the
same amount of training time). For more complex problems, you can gradually ramp
up the number of hidden layers, until you start overfitting the training set. Very com-
plex tasks, such as large image classification or speech recognition, typically require
networks with dozens of layers (or even hundreds, but not fully connected ones, as
we will see in Chapter 13), and they need a huge amount of training data. However,
you will rarely have to train such networks from scratch: it is much more common to
reuse parts of a pretrained state-of-the-art network that performs a similar task.
Training will be a lot faster and require much less data (we will discuss this in Chap-
ter 11).
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Number of Neurons per Hidden Layer

Obviously the number of neurons in the input and output layers is determined by the
type of input and output your task requires. For example, the MNIST task requires 28
X 28 = 784 input neurons and 10 output neurons. As for the hidden layers, a common
practice is to size them to form a funnel, with fewer and fewer neurons at each layer—
the rationale being that many low-level features can coalesce into far fewer high-level
features. For example, a typical neural network for MNIST may have two hidden lay-
ers, the first with 300 neurons and the second with 100. However, this practice is not
as common now, and you may simply use the same size for all hidden layers—for
example, all hidden layers with 150 neurons: that’s just one hyperparameter to tune
instead of one per layer. Just like for the number of layers, you can try increasing the
number of neurons gradually until the network starts overfitting. In general you will
get more bang for the buck by increasing the number of layers than the number of
neurons per layer. Unfortunately, as you can see, finding the perfect amount of neu-
rons is still somewhat of a black art.

A simpler approach is to pick a model with more layers and neurons than you
actually need, then use early stopping to prevent it from overfitting (and other regu-
larization techniques, especially dropout, as we will see in Chapter 11). This has been
dubbed the “stretch pants” approach:'? instead of wasting time looking for pants that
perfectly match your size, just use large stretch pants that will shrink down to the
right size.

Activation Functions

In most cases you can use the ReLU activation function in the hidden layers (or one
of its variants, as we will see in Chapter 11). It is a bit faster to compute than other
activation functions, and Gradient Descent does not get stuck as much on plateaus,
thanks to the fact that it does not saturate for large input values (as opposed to the
logistic function or the hyperbolic tangent function, which saturate at 1).

For the output layer, the softmax activation function is generally a good choice for
classification tasks (when the classes are mutually exclusive). For regression tasks,
you can simply use no activation function at all.

This concludes this introduction to artificial neural networks. In the following chap-
ters, we will discuss techniques to train very deep nets, and distribute training across
multiple servers and GPUs. Then we will explore a few other popular neural network
architectures: convolutional neural networks, recurrent neural networks, and autoen-
coders.?

12 By Vincent Vanhoucke in his Deep Learning class on Udacity.com.

13 A few extra ANN architectures are presented in Appendix E.
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Exercises

1.

Draw an ANN using the original artificial neurons (like the ones in Figure 10-3)
that computes A @ B (where @ represents the XOR operation). Hint: A @ B = (A
A= B)V (= AAB).

. Why is it generally preferable to use a Logistic Regression classifier rather than a

classical Perceptron (i.e., a single layer of linear threshold units trained using the
Perceptron training algorithm)? How can you tweak a Perceptron to make it
equivalent to a Logistic Regression classifier?

. Why was the logistic activation function a key ingredient in training the first

MLPs?

. Name three popular activation functions. Can you draw them?

. Suppose you have an MLP composed of one input layer with 10 passthrough

neurons, followed by one hidden layer with 50 artificial neurons, and finally one
output layer with 3 artificial neurons. All artificial neurons use the ReLU activa-
tion function.

o What is the shape of the input matrix X?

» What about the shape of the hidden layer’s weight vector W, and the shape of
its bias vector b,,?

« What is the shape of the output layer’s weight vector W,, and its bias vector b,?
« What is the shape of the network’s output matrix Y?

o Write the equation that computes the network’s output matrix Y as a function
of X, W,,b,, W, and b,.

. How many neurons do you need in the output layer if you want to classify email

into spam or ham? What activation function should you use in the output layer?
If instead you want to tackle MNIST, how many neurons do you need in the out-
put layer, using what activation function? Answer the same questions for getting
your network to predict housing prices as in Chapter 2.

. What is backpropagation and how does it work? What is the difference between

backpropagation and reverse-mode autodiff?

. Can you list all the hyperparameters you can tweak in an MLP? If the MLP over-

fits the training data, how could you tweak these hyperparameters to try to solve
the problem?

. Train a deep MLP on the MNIST dataset and see if you can get over 98% preci-

sion. Just like in the last exercise of Chapter 9, try adding all the bells and whistles
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(i.e., save checkpoints, restore the last checkpoint in case of an interruption, add
summaries, plot learning curves using TensorBoard, and so on).

Solutions to these exercises are available in Appendix A.
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CHAPTER 11
Training Deep Neural Nets

In Chapter 10 we introduced artificial neural networks and trained our first deep
neural network. But it was a very shallow DNN, with only two hidden layers. What if
you need to tackle a very complex problem, such as detecting hundreds of types of
objects in high-resolution images? You may need to train a much deeper DNN, per-
haps with (say) 10 layers, each containing hundreds of neurons, connected by hun-
dreds of thousands of connections. This would not be a walk in the park:

« First, you would be faced with the tricky vanishing gradients problem (or the
related exploding gradients problem) that affects deep neural networks and makes
lower layers very hard to train.

o Second, with such a large network, training would be extremely slow.

o Third, a model with millions of parameters would severely risk overfitting the
training set.

In this chapter, we will go through each of these problems in turn and present techni-
ques to solve them. We will start by explaining the vanishing gradients problem and
exploring some of the most popular solutions to this problem. Next we will look at
various optimizers that can speed up training large models tremendously compared
to plain Gradient Descent. Finally, we will go through a few popular regularization
techniques for large neural networks.

With these tools, you will be able to train very deep nets: welcome to Deep Learning!

Vanishing/Exploding Gradients Problems

As we discussed in Chapter 10, the backpropagation algorithm works by going from
the output layer to the input layer, propagating the error gradient on the way. Once
the algorithm has computed the gradient of the cost function with regards to each
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parameter in the network, it uses these gradients to update each parameter with a
Gradient Descent step.

Unfortunately, gradients often get smaller and smaller as the algorithm progresses
down to the lower layers. As a result, the Gradient Descent update leaves the lower
layer connection weights virtually unchanged, and training never converges to a good
solution. This is called the vanishing gradients problem. In some cases, the opposite
can happen: the gradients can grow bigger and bigger, so many layers get insanely
large weight updates and the algorithm diverges. This is the exploding gradients prob-
lem, which is mostly encountered in recurrent neural networks (see Chapter 14).
More generally, deep neural networks suffer from unstable gradients; different layers
may learn at widely different speeds.

Although this unfortunate behavior has been empirically observed for quite a while
(it was one of the reasons why deep neural networks were mostly abandoned for a
long time), it is only around 2010 that significant progress was made in understand-
ing it. A paper titled “Understanding the Difficulty of Training Deep Feedforward
Neural Networks” by Xavier Glorot and Yoshua Bengio' found a few suspects, includ-
ing the combination of the popular logistic sigmoid activation function and the
weight initialization technique that was most popular at the time, namely random ini-
tialization using a normal distribution with a mean of 0 and a standard deviation of 1.
In short, they showed that with this activation function and this initialization scheme,
the variance of the outputs of each layer is much greater than the variance of its
inputs. Going forward in the network, the variance keeps increasing after each layer
until the activation function saturates at the top layers. This is actually made worse by
the fact that the logistic function has a mean of 0.5, not 0 (the hyperbolic tangent
function has a mean of 0 and behaves slightly better than the logistic function in deep
networks).

Looking at the logistic activation function (see Figure 11-1), you can see that when
inputs become large (negative or positive), the function saturates at 0 or 1, with a
derivative extremely close to 0. Thus when backpropagation kicks in, it has virtually
no gradient to propagate back through the network, and what little gradient exists
keeps getting diluted as backpropagation progresses down through the top layers, so
there is really nothing left for the lower layers.

1 “Understanding the Difficulty of Training Deep Feedforward Neural Networks,” X. Glorot, Y Bengio (2010).
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Figure 11-1. Logistic activation function saturation

Xavier and He Initialization

In their paper, Glorot and Bengio propose a way to significantly alleviate this prob-
lem. We need the signal to flow properly in both directions: in the forward direction
when making predictions, and in the reverse direction when backpropagating gradi-
ents. We don't want the signal to die out, nor do we want it to explode and saturate.
For the signal to flow properly, the authors argue that we need the variance of the
outputs of each layer to be equal to the variance of its inputs,” and we also need the
gradients to have equal variance before and after flowing through a layer in the
reverse direction (please check out the paper if you are interested in the mathematical
details). It is actually not possible to guarantee both unless the layer has an equal
number of input and output connections, but they proposed a good compromise that
has proven to work very well in practice: the connection weights must be initialized
randomly as described in Equation 11-1, where n;,,,; and 71, are the number of
input and output connections for the layer whose weights are being initialized (also
called fan-in and fan-out). This initialization strategy is often called Xavier initializa-
tion (after the author’s first name), or sometimes Glorot initialization.

2 Here’s an analogy: if you set a microphone amplifier’s knob too close to zero, people won't hear your voice, but
if you set it too close to the max, your voice will be saturated and people won’t understand what you are say-
ing. Now imagine a chain of such amplifiers: they all need to be set properly in order for your voice to come
out loud and clear at the end of the chain. Your voice has to come out of each amplifier at the same amplitude
as it came in.
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Equation 11-1. Xavier initialization (when using the logistic activation function)

.. . . . L. 2
Normal distribution with mean 0 and standard deviation o =

ninputs + noutputs
6

Or a uniform distribution between -r and +r, with r =

h inputs + noutputs

When the number of input connections is roughly equal to the number of output

connections, you get simpler equations (e.g., 0 = 1\ puts OF 7= V31, /ninputs). We
used this simplified strategy in Chapter 10.?

Using the Xavier initialization strategy can speed up training considerably, and it is
one of the tricks that led to the current success of Deep Learning. Some recent papers*
have provided similar strategies for different activation functions, as shown in
Table 11-1. The initialization strategy for the ReLU activation function (and its var-
iants, including the ELU activation described shortly) is sometimes called He initiali-
zation (after the last name of its author).

Table 11-1. Initialization parameters for each type of activation function

Activation function  Uniform distribution [-r, r] Normal distribution

Logistic { {

|nputs outputs |nputs outputs
Hyperbolic tangent f f

mputs outputs mputs outputs
ReLU (and its variants) { (

mputs outputs mputs outputs

By default, the fully_connected() function (introduced in Chapter 10) uses Xavier
initialization (with a uniform distribution). You can change this to He initialization
by using the variance_scaling_initializer() function like this:

he_init
hidden1

tf.contrib.layers.variance_scaling_1initializer()
fully_connected(X, n_hidden1, weights_1initializer=he_1init, scope="h1")

3 This simplified strategy was actually already proposed much earlier—for example, in the 1998 book Neural
Networks: Tricks of the Trade by Genevieve Orr and Klaus-Robert Miiller (Springer).

4 Such as “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” K.
He et al. (2015).
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He initialization considers only the fan-in, not the average between
fan-in and fan-out like in Xavier initialization. This is also the
default for the variance_scaling_initializer() function, but
you can change this by setting the argument mode="FAN_AVG".

Nonsaturating Activation Functions

One of the insights in the 2010 paper by Glorot and Bengio was that the vanishing/
exploding gradients problems were in part due to a poor choice of activation func-
tion. Until then most people had assumed that if Mother Nature had chosen to use
roughly sigmoid activation functions in biological neurons, they must be an excellent
choice. But it turns out that other activation functions behave much better in deep
neural networks, in particular the ReLU activation function, mostly because it does
not saturate for positive values (and also because it is quite fast to compute).

Unfortunately, the ReLU activation function is not perfect. It suffers from a problem
known as the dying ReLUs: during training, some neurons effectively die, meaning
they stop outputting anything other than 0. In some cases, you may find that half of
your network’s neurons are dead, especially if you used a large learning rate. During
training, if a neuron’s weights get updated such that the weighted sum of the neuron’s
inputs is negative, it will start outputting 0. When this happen, the neuron is unlikely
to come back to life since the gradient of the ReLU function is 0 when its input is
negative.

To solve this problem, you may want to use a variant of the ReLU function, such as
the leaky ReLU. This function is defined as LeakyReLU,(z) = max(az, z) (see
Figure 11-2). The hyperparameter a defines how much the function “leaks” it is the
slope of the function for z < 0, and is typically set to 0.01. This small slope ensures
that leaky ReLUs never die; they can go into a long coma, but they have a chance to
eventually wake up. A recent paper® compared several variants of the ReLU activation
function and one of its conclusions was that the leaky variants always outperformed
the strict ReLU activation function. In fact, setting & = 0.2 (huge leak) seemed to
result in better performance than a = 0.01 (small leak). They also evaluated the
randomized leaky ReLU (RReLU), where « is picked randomly in a given range during
training, and it is fixed to an average value during testing. It also performed fairly well
and seemed to act as a regularizer (reducing the risk of overfitting the training set).
Finally, they also evaluated the parametric leaky ReLU (PReLU), where « is authorized
to be learned during training (instead of being a hyperparameter, it becomes a
parameter that can be modified by backpropagation like any other parameter). This

5 “Empirical Evaluation of Rectified Activations in Convolution Network,” B. Xu et al. (2015).
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was reported to strongly outperform ReLU on large image datasets, but on smaller
datasets it runs the risk of overfitting the training set.

Figure 11-2. Leaky ReLU

Last but not least, a 2015 paper by Djork-Arné Clevert et al.° proposed a new activa-
tion function called the exponential linear unit (ELU) that outperformed all the ReLU
variants in their experiments: training time was reduced and the neural network per-
formed better on the test set. It is represented in Figure 11-3, and Equation 11-2
shows its definition.

Equation 11-2. ELU activation function

alexp (z)-1) if z<0

ELU =
« (2 z ifz>0

Figure 11-3. ELU activation function

6 “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” D. Clevert, T. Unterthiner,
S. Hochreiter (2015).
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It looks a lot like the ReLU function, with a few major differences:

« First it takes on negative values when z < 0, which allows the unit to have an
average output closer to 0. This helps alleviate the vanishing gradients problem,
as discussed earlier. The hyperparameter « defines the value that the ELU func-
tion approaches when z is a large negative number. It is usually set to 1, but you
can tweak it like any other hyperparameter if you want.

« Second, it has a nonzero gradient for z < 0, which avoids the dying units issue.

o Third, the function is smooth everywhere, including around z = 0, which helps
speed up Gradient Descent, since it does not bounce as much left and right of z =
0.

The main drawback of the ELU activation function is that it is slower to compute
than the ReLU and its variants (due to the use of the exponential function), but dur-
ing training this is compensated by the faster convergence rate. However, at test time
an ELU network will be slower than a ReLU network.

So which activation function should you use for the hidden layers
of your deep neural networks? Although your mileage will vary, in
general ELU > leaky ReLU (and its variants) > ReLU > tanh > logis-
tic. If you care a lot about runtime performance, then you may pre-
fer leaky ReLUs over ELUs. If you don’t want to tweak yet another
hyperparameter, you may just use the default « values suggested
earlier (0.01 for the leaky ReLU, and 1 for ELU). If you have spare
time and computing power, you can use cross-validation to evalu-
ate other activation functions, in particular RReLU if your network
is overfitting, or PReLU if you have a huge training set.

TensorFlow offers an elu() function that you can use to build your neural network.
Simply set the activation_fn argument when calling the fully_connected() func-
tion, like this:

hidden1l = fully_connected(X, n_hidden1, activation_fn=tf.nn.elu)

TensorFlow does not have a predefined function for leaky ReLUs, but it is easy
enough to define:

def leaky_relu(z, name=None):
return tf.maximum(0.01 * z, z, name=name)

hidden1l = fully_connected(X, n_hidden1, activation_fn=1leaky_relu)

Vanishing/Exploding Gradients Problems | 281



Batch Normalization

Although using He initialization along with ELU (or any variant of ReLU) can signifi-
cantly reduce the vanishing/exploding gradients problems at the beginning of train-
ing, it doesn’t guarantee that they won’t come back during training.

In a 2015 paper,” Sergey loffe and Christian Szegedy proposed a technique called
Batch Normalization (BN) to address the vanishing/exploding gradients problems,
and more generally the problem that the distribution of each layer’s inputs changes
during training, as the parameters of the previous layers change (which they call the
Internal Covariate Shift problem).

The technique consists of adding an operation in the model just before the activation
function of each layer, simply zero-centering and normalizing the inputs, then scaling
and shifting the result using two new parameters per layer (one for scaling, the other
for shifting). In other words, this operation lets the model learn the optimal scale and
mean of the inputs for each layer.

In order to zero-center and normalize the inputs, the algorithm needs to estimate the
inputs’ mean and standard deviation. It does so by evaluating the mean and standard
deviation of the inputs over the current mini-batch (hence the name “Batch Normal-
ization”). The whole operation is summarized in Equation 11-3.

Equation 11-3. Batch Normalization algorithm

Bi=1
m
B
2_ 1 @ _ )
2 op° = mBi;(x /43)
(O]
ox -
3. x0= i

o uyis the empirical mean, evaluated over the whole mini-batch B.
o 0y is the empirical standard deviation, also evaluated over the whole mini-batch.

« my is the number of instances in the mini-batch.

7 “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” S. Toffe
and C. Szegedy (2015).
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o X7 is the zero-centered and normalized input.
o yis the scaling parameter for the layer.
o fis the shifting parameter (offset) for the layer.

o €is a tiny number to avoid division by zero (typically 10-%). This is called a
smoothing term.

« 2z is the output of the BN operation: it is a scaled and shifted version of the
inputs.

At test time, there is no mini-batch to compute the empirical mean and standard
deviation, so instead you simply use the whole training set’s mean and standard devi-
ation. These are typically efficiently computed during training using a moving aver-
age. So, in total, four parameters are learned for each batch-normalized layer: y
(scale), 3 (offset), 4 (mean), and o (standard deviation).

The authors demonstrated that this technique considerably improved all the deep
neural networks they experimented with. The vanishing gradients problem was
strongly reduced, to the point that they could use saturating activation functions such
as the tanh and even the logistic activation function. The networks were also much
less sensitive to the weight initialization. They were able to use much larger learning
rates, significantly speeding up the learning process. Specifically, they note that
“Applied to a state-of-the-art image classification model, Batch Normalization ach-
ieves the same accuracy with 14 times fewer training steps, and beats the original
model by a significant margin. [...] Using an ensemble of batch-normalized net-
works, we improve upon the best published result on ImageNet classification: reach-
ing 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of
human raters” Finally, like a gift that keeps on giving, Batch Normalization also acts
like a regularizer, reducing the need for other regularization techniques (such as
dropout, described later in the chapter).

Batch Normalization does, however, add some complexity to the model (although it
removes the need for normalizing the input data since the first hidden layer will take
care of that, provided it is batch-normalized). Moreover, there is a runtime penalty:
the neural network makes slower predictions due to the extra computations required
at each layer. So if you need predictions to be lightning-fast, you may want to check
how well plain ELU + He initialization perform before playing with Batch Normaliza-
tion.

You may find that training is rather slow at first while Gradient
Descent is searching for the optimal scales and offsets for each
layer, but it accelerates once it has found reasonably good values.
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Implementing Batch Normalization with TensorFlow

TensorFlow provides a batch_normalization() function that simply centers and
normalizes the inputs, but you must compute the mean and standard deviation your-
self (based on the mini-batch data during training or on the full dataset during test-
ing, as just discussed) and pass them as parameters to this function, and you must
also handle the creation of the scaling and offset parameters (and pass them to this
function). It is doable, but not the most convenient approach. Instead, you should use
the batch_norm() function, which handles all this for you. You can either call it
directly or tell the fully_connected() function to use it, such as in the following
code:

import as
from import batch_norm

n_inputs = 28 * 28
n_hidden1 = 300
n_hidden2 = 100
n_outputs = 10

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")

is_training = tf.placeholder(tf.bool, shape=(), name='is_training')
bn_params = {

'i{s_training': is_training,

'decay': 0.99,

'updates_collections': None

}

hiddenl = fully_connected(X, n_hiddenl, scope="hidden1",
normalizer_fn=batch_norm, normalizer_params=bn_params)
hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2",
normalizer_fn=batch_norm, normalizer_params=bn_params)
logits = fully_connected(hidden2, n_outputs, activation_fn=None,scope="outputs",
normalizer_fn=batch_norm, normalizer_params=bn_params)
Let’s walk through this code. The first lines are fairly self-explanatory, until we define
the is_training placeholder, which will either be True or False. This will be used to
tell the batch_norm() function whether it should use the current mini-batch’s mean
and standard deviation (during training) or the running averages that it keeps track
of (during testing).

Next we define bn_params, which is a dictionary that defines the parameters that will
be passed to the batch_norm() function, including is_training of course. The algo-
rithm uses exponential decay to compute the running averages, which is why it
requires the decay parameters. Given a new value v, the running average v is updated
through the equation v < v x decay + v x (1 — decay). A good decay value is typically
close to 1—for example, 0.9, 0.99, or 0.999 (you want more 9s for larger datasets and
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smaller mini-batches). Finally, updates_collections should be set to None if you
want the batch_norm() function to update the running averages right before it per-
forms batch normalization during training (i.e., when is_training=True). If you
don’t set this parameter, by default TensorFlow will just add the operations that
update the running averages to a collection of operations that you must run yourself.

Lastly, we create the layers by calling the fully_connected() function, just like we
did in Chapter 10, but this time we tell it to use the batch_norm() function (with the
parameters nb_params) to normalize the inputs right before calling the activation
function.

Note that by default batch_norm() only centers, normalizes, and shifts the inputs; it
does not scale them (i.e., y is fixed to 1). This makes sense for layers with no activa-
tion function or with the ReLU activation function, since the next layer’s weights can
take care of scaling, but for any other activation function, you should add "scale":
True to bn_params.

You may have noticed that defining the preceding three layers was fairly repetitive
since several parameters were identical. To avoid repeating the same parameters over
and over again, you can create an argument scope using the arg_scope() function:
the first parameter is a list of functions, and the other parameters will be passed to
these functions automatically. The last three lines of the preceding code can be modi-
fied like so:

[...]

with tf.contrib.framework.arg_scope(
[fully_connected],
normalizer_fn=batch_norm,
normalizer_params=bn_params):
hiddenl = fully_connected(X, n_hiddenl, scope="hiddenl1")
hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")
logits = fully_connected(hidden2, n_outputs, scope="outputs",
activation_fn=None)
It may not look much better than before in this small example, but if you have 10 lay-
ers and want to set the activation function, the initializers, the normalizers, the regu-
larizers, and so on, it will make your code much more readable.

The rest of the construction phase is the same as in Chapter 10: define the cost func-
tion, create an optimizer, tell it to minimize the cost function, define the evaluation
operations, create a Saver, and so on.

The execution phase is also pretty much the same, with one exception. Whenever you
run an operation that depends on the batch_norm layer, you need to set the is_train
ing placeholder to True or False:
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with tf.Session() as sess:
sess.run(init)

for epoch in range(n_epochs):
[...]
for X_batch, y_batch in zip(X_batches, y_batches):
sess.run(training_op,
feed_dict={is_training: True, X: X_batch, y: y_batch})
accuracy_score = accuracy.eval(
feed_dict={is_training: False, X: X_test_scaled, y: y_test}))
print(accuracy_score)
That’s all! In this tiny example with just two layers, it’s unlikely that Batch Normaliza-
tion will have a very positive impact, but for deeper networks it can make a tremen-
dous difference.

Gradient Clipping

A popular technique to lessen the exploding gradients problem is to simply clip the
gradients during backpropagation so that they never exceed some threshold (this is
mostly useful for recurrent neural networks; see Chapter 14). This is called Gradient
Clipping.® In general people now prefer Batch Normalization, but it’s still useful to
know about Gradient Clipping and how to implement it.

In TensorFlow, the optimizer’s minimize() function takes care of both computing the
gradients and applying them, so you must instead call the optimizer’s compute_gradi
ents() method first, then create an operation to clip the gradients using the
clip_by_value() function, and finally create an operation to apply the clipped gradi-
ents using the optimizer’s apply_gradients() method:

threshold = 1.0

optimizer = tf.train.GradientDescentOptimizer(learning_rate)

grads_and_vars = optimizer.compute_gradients(loss)

capped_gvs = [(tf.clip_by_value(grad, -threshold, threshold), var)
for grad, var in grads_and_vars]

training_op = optimizer.apply_gradients(capped_gvs)

You would then run this training_op at every training step, as usual. It will compute
the gradients, clip them between -1.0 and 1.0, and apply them. The threshold is a
hyperparameter you can tune.

Reusing Pretrained Layers

It is generally not a good idea to train a very large DNN from scratch: instead, you
should always try to find an existing neural network that accomplishes a similar task

8 “On the difficulty of training recurrent neural networks,” R. Pascanu et al. (2013).
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to the one you are trying to tackle, then just reuse the lower layers of this network:
this is called transfer learning. It will not only speed up training considerably, but will
also require much less training data.

For example, suppose that you have access to a DNN that was trained to classify pic-
tures into 100 different categories, including animals, plants, vehicles, and everyday
objects. You now want to train a DNN to classify specific types of vehicles. These
tasks are very similar, so you should try to reuse parts of the first network (see
Figure 11-4).

Figure 11-4. Reusing pretrained layers

If the input pictures of your new task don’t have the same size as
the ones used in the original task, you will have to add a prepro-
cessing step to resize them to the size expected by the original
model. More generally, transfer learning will work only well if the
inputs have similar low-level features.

Reusing a TensorFlow Model

If the original model was trained using TensorFlow, you can simply restore it and
train it on the new task:

[...] # construct the original model

with tf.Session() as sess:
saver.restore(sess, "./my_original_model.ckpt")
[...] # Train it on your new task
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However, in general you will want to reuse only part of the original model (as we will
discuss in a moment). A simple solution is to configure the Saver to restore only a
subset of the variables from the original model. For example, the following code
restores only hidden layers 1, 2, and 3:

[...] # build new model with the same definition as before for hidden layers 1-3
init = tf.global_variables_initializer()

reuse_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
scope="hidden[123]")

reuse_vars_dict = dict([(var.name, var.name) for var in reuse_vars])

original_saver = tf.Saver(reuse_vars_dict) # saver to restore the original model

new_saver = tf.Saver() # saver to save the new model

with tf.Session() as sess:
sess.run(init)
original_saver.restore("./my_original_model.ckpt") # restore layers 1 to 3
[...] # train the new model
new_saver.save("./my_new_model.ckpt") # save the whole model

First we build the new model, making sure to copy the original model’s hidden layers
1 to 3. We also create a node to initialize all variables. Then we get the list of all vari-
ables that were just created with "trainable=True" (which is the default), and we
keep only the ones whose scope matches the regular expression "hidden[123]" (i.e.,
we get all trainable variables in hidden layers 1 to 3). Next we create a dictionary
mapping the name of each variable in the original model to its name in the new
model (generally you want to keep the exact same names). Then we create a Saver
that will restore only these variables, and we create another Saver to save the entire
new model, not just layers 1 to 3. We then start a session and initialize all variables in
the model, then restore the variable values from the original model’s layers 1 to 3.
Finally, we train the model on the new task and save it.

The more similar the tasks are, the more layers you want to reuse
(starting with the lower layers). For very similar tasks, you can try
keeping all the hidden layers and just replace the output layer.

Reusing Models from Other Frameworks

If the model was trained using another framework, you will need to load the weights
manually (e.g., using Theano code if it was trained with Theano), then assign them to
the appropriate variables. This can be quite tedious. For example, the following code
shows how you would copy the weight and biases from the first hidden layer of a
model trained using another framework:
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original_w
original_b

[...] # Load the weights from the other framework
[...] # Load the biases from the other framework

X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
hiddenl = fully_connected(X, n_hidden1l, scope="hidden1")
[...] # # Build the rest of the model

# Get a handle on the variables created by fully_connected()

with tf.variable_scope("", default_name="", reuse=True): # root scope
hidden1_weights = tf.get_variable("hidden1/weights")
hidden1_biases = tf.get_variable("hidden1/biases")

# Create nodes to assign arbitrary values to the weights and biases
original_weights = tf.placeholder(tf.float32, shape=(n_inputs, n_hidden1))
original_biases = tf.placeholder(tf.float32, shape=(n_hidden1))
assign_hidden1_weights = tf.assign(hidden1_weights, original_weights)
assign_hidden1_biases = tf.assign(hiddeni_biases, original_biases)

init = tf.global_variables_initializer()

with tf.Session() as sess:
sess.run(init)
sess.run(assign_hiddenl_weights, feed_dict={original_weights: original_w})
sess.run(assign_hidden1_biases, feed_dict={original_biases: original_b})
[...] # Train the model on your new task

Freezing the Lower Layers

It is likely that the lower layers of the first DNN have learned to detect low-level fea-
tures in pictures that will be useful across both image classification tasks, so you can
just reuse these layers as they are. It is generally a good idea to “freeze” their weights
when training the new DNN: if the lower-layer weights are fixed, then the higher-
layer weights will be easier to train (because they won’t have to learn a moving target).
To freeze the lower layers during training, the simplest solution is to give the opti-
mizer the list of variables to train, excluding the variables from the lower layers:

train_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
scope="hidden[34] |outputs")

training_op = optimizer.minimize(loss, var_list=train_vars)
The first line gets the list of all trainable variables in hidden layers 3 and 4 and in the
output layer. This leaves out the variables in the hidden layers 1 and 2. Next we pro-
vide this restricted list of trainable variables to the optimizer’s minimize() function.
Ta-da! Layers 1 and 2 are now frozen: they will not budge during training (these are
often called frozen layers).

Reusing Pretrained Layers | 289



Caching the Frozen Layers

Since the frozen layers won’t change, it is possible to cache the output of the topmost
frozen layer for each training instance. Since training goes through the whole dataset
many times, this will give you a huge speed boost as you will only need to go through
the frozen layers once per training instance (instead of once per epoch). For example,
you could first run the whole training set through the lower layers (assuming you
have enough RAM):

hidden2_outputs = sess.run(hidden2, feed_dict={X: X_train})

Then during training, instead of building batches of training instances, you would
build batches of outputs from hidden layer 2 and feed them to the training operation:

import as

n_epochs = 100
n_batches = 500

for epoch in range(n_epochs):

shuffled_idx = rnd.permutation(len(hidden2_outputs))

hidden2_batches = np.array_split(hidden2_outputs[shuffled_idx], n_batches)

y_batches = np.array_split(y_train[shuffled_idx], n_batches)

for hidden2_batch, y_batch in zip(hidden2_batches, y_batches):

sess.run(training_op, feed_dict={hidden2: hidden2_batch, y: y_batch})

The last line runs the training operation defined earlier (which freezes layers 1 and 2),
and feeds it a batch of outputs from the second hidden layer (as well as the targets for
that batch). Since we give TensorFlow the output of hidden layer 2, it does not try to
evaluate it (or any node it depends on).

Tweaking, Dropping, or Replacing the Upper Layers

The output layer of the original model should usually be replaced since it is most
likely not useful at all for the new task, and it may not even have the right number of
outputs for the new task.

Similarly, the upper hidden layers of the original model are less likely to be as useful
as the lower layers, since the high-level features that are most useful for the new task
may differ significantly from the ones that were most useful for the original task. You
want to find the right number of layers to reuse.

Try freezing all the copied layers first, then train your model and see how it performs.
Then try unfreezing one or two of the top hidden layers to let backpropagation tweak
them and see if performance improves. The more training data you have, the more
layers you can unfreeze.

If you still cannot get good performance, and you have little training data, try drop-
ping the top hidden layer(s) and freeze all remaining hidden layers again. You can
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iterate until you find the right number of layers to reuse. If you have plenty of train-
ing data, you may try replacing the top hidden layers instead of dropping them, and
even add more hidden layers.

Model Zoos

Where can you find a neural network trained for a task similar to the one you want to
tackle? The first place to look is obviously in your own catalog of models. This is one
good reason to save all your models and organize them so you can retrieve them later
easily. Another option is to search in a model zoo. Many people train Machine Learn-
ing models for various tasks and kindly release their pretrained models to the public.

TensorFlow has its own model zoo available at https://github.com/tensorflow/models.
In particular, it contains most of the state-of-the-art image classification nets such as
VGG, Inception, and ResNet (see Chapter 13, and check out the models/slim direc-
tory), including the code, the pretrained models, and tools to download popular
image datasets.

Another popular model zoo is Caffe’s Model Zoo. It also contains many computer
vision models (e.g., LeNet, AlexNet, ZFNet, GoogLeNet, VGGNet, inception) trained
on various datasets (e.g., ImageNet, Places Database, CIFARI10, etc.). Saumitro Das-
gupta wrote a converter, which is available at https://github.com/ethereon/caffe-
tensorflow.

Unsupervised Pretraining

Suppose you want to tackle a complex task for which you don’t have much labeled
training data, but unfortunately you cannot find a model trained on a similar task.
Don’t lose all hope! First, you should of course try to gather more labeled training
data, but if this is too hard or too expensive, you may still be able to perform unsuper-
vised pretraining (see Figure 11-5). That is, if you have plenty of unlabeled training
data, you can try to train the layers one by one, starting with the lowest layer and then
going up, using an unsupervised feature detector algorithm such as Restricted Boltz-
mann Machines (RBMs; see Appendix E) or autoencoders (see Chapter 15). Each
layer is trained on the output of the previously trained layers (all layers except the one
being trained are frozen). Once all layers have been trained this way, you can fine-
tune the network using supervised learning (i.e., with backpropagation).

This is a rather long and tedious process, but it often works well; in fact, it is this
technique that Geoffrey Hinton and his team used in 2006 and which led to the
revival of neural networks and the success of Deep Learning. Until 2010, unsuper-
vised pretraining (typically using RBMs) was the norm for deep nets, and it was only
after the vanishing gradients problem was alleviated that it became much more com-
mon to train DNNs purely using backpropagation. However, unsupervised pretrain-
ing (today typically using autoencoders rather than RBMs) is still a good option when
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you have a complex task to solve, no similar model you can reuse, and little labeled
training data but plenty of unlabeled training data.’

Figure 11-5. Unsupervised pretraining

Pretraining on an Auxiliary Task

One last option is to train a first neural network on an auxiliary task for which you
can easily obtain or generate labeled training data, then reuse the lower layers of that
network for your actual task. The first neural network’s lower layers will learn feature
detectors that will likely be reusable by the second neural network.

For example, if you want to build a system to recognize faces, you may only have a
few pictures of each individual—clearly not enough to train a good classifier. Gather-
ing hundreds of pictures of each person would not be practical. However, you could
gather a lot of pictures of random people on the internet and train a first neural net-
work to detect whether or not two different pictures feature the same person. Such a

9 Another option is to come up with a supervised task for which you can easily gather a lot of labeled training
data, then use transfer learning, as explained earlier. For example, if you want to train a model to identify your
friends in pictures, you could download millions of faces on the internet and train a classifier to detect
whether two faces are identical or not, then use this classifier to compare a new picture with each picture of
your friends.
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network would learn good feature detectors for faces, so reusing its lower layers
would allow you to train a good face classifier using little training data.

It is often rather cheap to gather unlabeled training examples, but quite expensive to
label them. In this situation, a common technique is to label all your training exam-
ples as “good,” then generate many new training instances by corrupting the good
ones, and label these corrupted instances as “bad” Then you can train a first neural
network to classify instances as good or bad. For example, you could download mil-
lions of sentences, label them as “good,” then randomly change a word in each sen-
tence and label the resulting sentences as “bad.” If a neural network can tell that “The
dog sleeps” is a good sentence but “The dog they” is bad, it probably knows quite a lot
about language. Reusing its lower layers will likely help in many language processing
tasks.

Another approach is to train a first network to output a score for each training
instance, and use a cost function that ensures that a good instance’s score is greater
than a bad instance’s score by at least some margin. This is called max margin learn-

ing.

Faster Optimizers

Training a very large deep neural network can be painfully slow. So far we have seen
four ways to speed up training (and reach a better solution): applying a good initiali-
zation strategy for the connection weights, using a good activation function, using
Batch Normalization, and reusing parts of a pretrained network. Another huge speed
boost comes from using a faster optimizer than the regular Gradient Descent opti-
mizer. In this section we will present the most popular ones: Momentum optimiza-
tion, Nesterov Accelerated Gradient, AdaGrad, RMSProp, and finally Adam
optimization.

Spoiler alert: the conclusion of this section is that you should almost always use

Adam optimization,” so if you don’t care about how it works, simply replace your
GradientDescentOptimizer with an AdamOptimizer and skip to the next section!
With just this small change, training will typically be several times faster. However,
Adam optimization does have three hyperparameters that you can tune (plus the
learning rate); the default values usually work fine, but if you ever need to tweak them
it may be helpful to know what they do. Adam optimization combines several ideas
from other optimization algorithms, so it is useful to look at these algorithms first.

10 At least for now: research is moving fast, especially in the field of optimization. Be sure to take a look at the
latest and greatest optimizers every time a new version of TensorFlow is released.
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Momentum optimization

Imagine a bowling ball rolling down a gentle slope on a smooth surface: it will start
out slowly, but it will quickly pick up momentum until it eventually reaches terminal
velocity (if there is some friction or air resistance). This is the very simple idea behind
Momentum optimization, proposed by Boris Polyak in 1964." In contrast, regular
Gradient Descent will simply take small regular steps down the slope, so it will take
much more time to reach the bottom.

Recall that Gradient Descent simply updates the weights 0 by directly subtracting the
gradient of the cost function J(0) with regards to the weights (V,/(6)) multiplied by
the learning rate #. The equation is: 6 <= 6 — #VJ(0). It does not care about what the
earlier gradients were. If the local gradient is tiny, it goes very slowly.

Momentum optimization cares a great deal about what previous gradients were: at
each iteration, it adds the local gradient to the momentum vector m (multiplied by the
learning rate #), and it updates the weights by simply subtracting this momentum
vector (see Equation 11-4). In other words, the gradient is used as an acceleration, not
as a speed. To simulate some sort of friction mechanism and prevent the momentum
from growing too large, the algorithm introduces a new hyperparameter f3, simply
called the momentum, which must be set between 0 (high friction) and 1 (no friction).
A typical momentum value is 0.9.

Equation 11-4. Momentum algorithm
1. m<« fm+nVg(0)
2. 60«0-m

You can easily verify that if the gradient remains constant, the terminal velocity (i.e.,
the maximum size of the weight updates) is equal to that gradient multiplied by the
learning rate # multiplied by 1% For example, if = 0.9, then the terminal velocity

B

is equal to 10 times the gradient times the learning rate, so Momentum optimization
ends up going 10 times faster than Gradient Descent! This allows Momentum opti-
mization to escape from plateaus much faster than Gradient Descent. In particular,
we saw in Chapter 4 that when the inputs have very different scales the cost function
will look like an elongated bowl (see Figure 4-7). Gradient Descent goes down the
steep slope quite fast, but then it takes a very long time to go down the valley. In con-
trast, Momentum optimization will roll down the bottom of the valley faster and
faster until it reaches the bottom (the optimum). In deep neural networks that don’t
use Batch Normalization, the upper layers will often end up having inputs with very

11 “Some methods of speeding up the convergence of iteration methods,” B. Polyak (1964).
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different scales, so using Momentum optimization helps a lot. It can also help roll
past local optima.

Due to the momentum, the optimizer may overshoot a bit, then
come back, overshoot again, and oscillate like this many times
before stabilizing at the minimum. This is one of the reasons why it
is good to have a bit of friction in the system: it gets rid of these
oscillations and thus speeds up convergence.

Implementing Momentum optimization in TensorFlow is a no-brainer: just replace
the GradientDescentOptimizer with the MomentumOptimizer, then lie back and
profit!
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
momentum=0.9)

The one drawback of Momentum optimization is that it adds yet another hyperpara-
meter to tune. However, the momentum value of 0.9 usually works well in practice
and almost always goes faster than Gradient Descent.

Nesterov Accelerated Gradient

One small variant to Momentum optimization, proposed by Yurii Nesterov in 1983,
is almost always faster than vanilla Momentum optimization. The idea of Nesterov
Momentum optimization, or Nesterov Accelerated Gradient (NAG), is to measure the
gradient of the cost function not at the local position but slightly ahead in the direc-
tion of the momentum (see Equation 11-5). The only difference from vanilla
Momentum optimization is that the gradient is measured at 0 + fm rather than at 6.

Equation 11-5. Nesterov Accelerated Gradient algorithm
1. m<« pm+nVy(0+pm)
2. 0«0-m

This small tweak works because in general the momentum vector will be pointing in
the right direction (i.e., toward the optimum), so it will be slightly more accurate to
use the gradient measured a bit farther in that direction rather than using the gradi-
ent at the original position, as you can see in Figure 11-6 (where V, represents the
gradient of the cost function measured at the starting point 8, and V, represents the
gradient at the point located at 6 + fm). As you can see, the Nesterov update ends up

12 “A Method for Unconstrained Convex Minimization Problem with the Rate of Convergence O(1/k?),” Yurii
Nesterov (1983).
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slightly closer to the optimum. After a while, these small improvements add up and
NAG ends up being significantly faster than regular Momentum optimization. More-
over, note that when the momentum pushes the weights across a valley, V, continues
to push further across the valley, while V, pushes back toward the bottom of the val-
ley. This helps reduce oscillations and thus converges faster.

_Starting point

Regular momentum update
1 II

/ Nesterov update
- J(6)

optimum

nv

ym

Figure 11-6. Regular versus Nesterov Momentum optimization

NAG will almost always speed up training compared to regular Momentum optimi-
zation. To use it, simply set use_nesterov=True when creating the MomentumOptim
izer:

optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
momentum=0.9, use_nesterov=True)

AdaGrad

Consider the elongated bowl problem again: Gradient Descent starts by quickly going
down the steepest slope, then slowly goes down the bottom of the valley. It would be
nice if the algorithm could detect this early on and correct its direction to point a bit
more toward the global optimum.
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The AdaGrad algorithm' achieves this by scaling down the gradient vector along the
steepest dimensions (see Equation 11-6):

Equation 11-6. AdaGrad algorithm
1. s<s+Vg(0)®Vy(0)
2. 0«0-yVJO)Oys+e

The first step accumulates the square of the gradients into the vector s (the ® symbol
represents the element-wise multiplication). This vectorized form is equivalent to
computing s; < s; + (9 / 0 0, J(0))* for each element s; of the vector s; in other words,
each s; accumulates the squares of the partial derivative of the cost function with
regards to parameter 0. If the cost function is steep along the i dimension, then s,
will get larger and larger at each iteration.

The second step is almost identical to Gradient Descent, but with one big difference:
the gradient vector is scaled down by a factor of /s + € (the @ symbol represents the
element-wise division, and € is a smoothing term to avoid division by zero, typically
set to 107%). This vectorized form is equivalent to computing
0, < 0,—19/00, J(0)/,/s; + € for all parameters 0, (simultaneously).

In short, this algorithm decays the learning rate, but it does so faster for steep dimen-
sions than for dimensions with gentler slopes. This is called an adaptive learning rate.
It helps point the resulting updates more directly toward the global optimum (see
Figure 11-7). One additional benefit is that it requires much less tuning of the learn-
ing rate hyperparameter 7.

Figure 11-7. AdaGrad versus Gradient Descent

13 “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization,” J. Duchi et al. (2011).
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AdaGrad often performs well for simple quadratic problems, but unfortunately it
often stops too early when training neural networks. The learning rate gets scaled
down so much that the algorithm ends up stopping entirely before reaching the
global optimum. So even though TensorFlow has an AdagradOptimizer, you should
not use it to train deep neural networks (it may be efficient for simpler tasks such as
Linear Regression, though).

RMSProp

Although AdaGrad slows down a bit too fast and ends up never converging to the
global optimum, the RMSProp algorithm' fixes this by accumulating only the gradi-
ents from the most recent iterations (as opposed to all the gradients since the begin-
ning of training). It does so by using exponential decay in the first step (see Equation
11-7).

Equation 11-7. RMSProp algorithm
1. s<fs+(1-B)Vy(0) ® VgI(0)
2. 0« 0-nVg(0)Oys+e

The decay rate f3 is typically set to 0.9. Yes, it is once again a new hyperparameter, but
this default value often works well, so you may not need to tune it at all.

As you might expect, TensorFlow has an RMSPropOptimizer class:
optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate,
momentum=0.9, decay=0.9, epsilon=1e-10)

Except on very simple problems, this optimizer almost always performs much better
than AdaGrad. It also generally performs better than Momentum optimization and
Nesterov Accelerated Gradients. In fact, it was the preferred optimization algorithm
of many researchers until Adam optimization came around.

Adam Optimization

Adam," which stands for adaptive moment estimation, combines the ideas of Momen-
tum optimization and RMSProp: just like Momentum optimization it keeps track of
an exponentially decaying average of past gradients, and just like RMSProp it keeps

14 This algorithm was created by Tijmen Tieleman and Geoffrey Hinton in 2012, and presented by Geoffrey
Hinton in his Coursera class on neural networks (slides: http://goo.gl/RsQeis; video: https://goo.gl/XUbIy]).
Amusingly, since the authors have not written a paper to describe it, researchers often cite “slide 29 in lecture
6” in their papers.

15 “Adam: A Method for Stochastic Optimization,” D. Kingma, J. Ba (2015).
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track of an exponentially decaying average of past squared gradients (see Equation
11-8).1

Equation 11-8. Adam algorithm

1. m<«pm+(1-p,)Vg(0)

2. s« Bs+(1-B,)Ve(0) ® VgI(6)

3 m <« m
: T
1—/31
S
4, S <«
T
1—[32

5. 0« 0-mmQs+e

o Trepresents the iteration number (starting at 1).

If you just look at steps 1, 2, and 5, you will notice Adam’s close similarity to both
Momentum optimization and RMSProp. The only difference is that step 1 computes
an exponentially decaying average rather than an exponentially decaying sum, but
these are actually equivalent except for a constant factor (the decaying average is just
1 - B, times the decaying sum). Steps 3 and 4 are somewhat of a technical detail: since
m and s are initialized at 0, they will be biased toward 0 at the beginning of training,
so these two steps will help boost m and s at the beginning of training.

The momentum decay hyperparameter f3, is typically initialized to 0.9, while the scal-
ing decay hyperparameter §, is often initialized to 0.999. As earlier, the smoothing
term e is usually initialized to a tiny number such as 10-%. These are the default values
for TensorFlow’s AdamOptimizer class, so you can simply use:

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

In fact, since Adam is an adaptive learning rate algorithm (like AdaGrad and
RMSProp), it requires less tuning of the learning rate hyperparameter 7. You can
often use the default value # = 0.001, making Adam even easier to use than Gradient
Descent.

16 These are estimations of the mean and (uncentered) variance of the gradients. The mean is often called the
first moment, while the variance is often called the second moment, hence the name of the algorithm.
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All the optimization techniques discussed so far only rely on the
first-order partial derivatives (Jacobians). The optimization litera-
ture contains amazing algorithms based on the second-order partial
derivatives (the Hessians). Unfortunately, these algorithms are very
hard to apply to deep neural networks because there are n*> Hessi-
ans per output (where 7 is the number of parameters), as opposed
to just n Jacobians per output. Since DNNs typically have tens of
thousands of parameters, the second-order optimization algo-
rithms often don't even fit in memory, and even when they do,
computing the Hessians is just too slow.

Training Sparse Models

All the optimization algorithms just presented produce dense models, meaning that
most parameters will be nonzero. If you need a blazingly fast model at runtime, or if
you need it to take up less memory, you may prefer to end up with a sparse model
instead.

One trivial way to achieve this is to train the model as usual, then get rid of the tiny
weights (set them to 0).

Another option is to apply strong ¢, regularization during training, as it pushes the
optimizer to zero out as many weights as it can (as discussed in Chapter 4 about Lasso
Regression).

However, in some cases these techniques may remain insufficient. One last option is
to apply Dual Averaging, often called Follow The Regularized Leader (FTRL), a techni-
que proposed by Yurii Nesterov.”” When used with €, regularization, this technique
often leads to very sparse models. TensorFlow implements a variant of FTRL called
FTRL-Proximal'® in the FTRLOptimizer class.

Learning Rate Scheduling

Finding a good learning rate can be tricky. If you set it way too high, training may
actually diverge (as we discussed in Chapter 4). If you set it too low, training will
eventually converge to the optimum, but it will take a very long time. If you set it
slightly too high, it will make progress very quickly at first, but it will end up dancing
around the optimum, never settling down (unless you use an adaptive learning rate
optimization algorithm such as AdaGrad, RMSProp, or Adam, but even then it may
take time to settle). If you have a limited computing budget, you may have to inter-

17 “Primal-Dual Subgradient Methods for Convex Problems,” Yurii Nesterov (2005).
18 “Ad Click Prediction: a View from the Trenches,” H. McMahan et al. (2013).
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rupt training before it has converged properly, yielding a suboptimal solution (see
Figure 11-8).

Figure 11-8. Learning curves for various learning rates

You may be able to find a fairly good learning rate by training your network several
times during just a few epochs using various learning rates and comparing the learn-
ing curves. The ideal learning rate will learn quickly and converge to good solution.

However, you can do better than a constant learning rate: if you start with a high
learning rate and then reduce it once it stops making fast progress, you can reach a
good solution faster than with the optimal constant learning rate. There are many dif-
ferent strategies to reduce the learning rate during training. These strategies are called
learning schedules (we briefly introduced this concept in Chapter 4), the most com-
mon of which are:

Predetermined piecewise constant learning rate
For example, set the learning rate to #, = 0.1 at first, then to #, = 0.001 after 50
epochs. Although this solution can work very well, it often requires fiddling
around to figure out the right learning rates and when to use them.

Performance scheduling
Measure the validation error every N steps (just like for early stopping) and
reduce the learning rate by a factor of A when the error stops dropping.

Exponential scheduling
Set the learning rate to a function of the iteration number t: #(t) = #, 10". This
works great, but it requires tuning 7, and r. The learning rate will drop by a fac-
tor of 10 every r steps.

Power scheduling
Set the learning rate to #7(t) = #, (1 + t/r)™. The hyperparameter c is typically set
to 1. This is similar to exponential scheduling, but the learning rate drops much
more slowly.
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A 2013 paper” by Andrew Senior et al. compared the performance of some of the
most popular learning schedules when training deep neural networks for speech rec-
ognition using Momentum optimization. The authors concluded that, in this setting,
both performance scheduling and exponential scheduling performed well, but they
favored exponential scheduling because it is simpler to implement, is easy to tune,
and converged slightly faster to the optimal solution.

Implementing a learning schedule with TensorFlow is fairly straightforward:

initial_learning_rate = 0.1

decay_steps = 10000

decay_rate = 1/10

global_step = tf.vVariable(0, trainable=False)

learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step,

decay_steps, decay_rate)

optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9)

training_op = optimizer.minimize(loss, global_step=global_step)
After setting the hyperparameter values, we create a nontrainable variable
global_step (initialized to 0) to keep track of the current training iteration number.
Then we define an exponentially decaying learning rate (with #, = 0.1 and r = 10,000)
using TensorFlow’s exponential_decay() function. Next, we create an optimizer (in
this example, a MomentumOptimizer) using this decaying learning rate. Finally, we cre-
ate the training operation by calling the optimizer’s minimize() method; since we
pass it the global_step variable, it will kindly take care of incrementing it. That's it!

Since AdaGrad, RMSProp, and Adam optimization automatically reduce the learning
rate during training, it is not necessary to add an extra learning schedule. For other
optimization algorithms, using exponential decay or performance scheduling can
considerably speed up convergence.

Avoiding Overfitting Through Regularization

With four parameters I can fit an elephant and with five I can make him wiggle his
trunk.

—John von Neumann, cited by Enrico Fermi in Nature 427

Deep neural networks typically have tens of thousands of parameters, sometimes
even millions. With so many parameters, the network has an incredible amount of
freedom and can fit a huge variety of complex datasets. But this great flexibility also
means that it is prone to overfitting the training set.

19 “An Empirical Study of Learning Rates in Deep Neural Networks for Speech Recognition,” A. Senior et al.
(2013).
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With millions of parameters you can fit the whole zoo. In this section we will present
some of the most popular regularization techniques for neural networks, and how to
implement them with TensorFlow: early stopping, £, and ¢, regularization, dropout,
max-norm regularization, and data augmentation.

Early Stopping

To avoid overfitting the training set, a great solution is early stopping (introduced in
Chapter 4): just interrupt training when its performance on the validation set starts
dropping.

One way to implement this with TensorFlow is to evaluate the model on a validation
set at regular intervals (e.g., every 50 steps), and save a “winner” snapshot if it outper-
forms previous “winner” snapshots. Count the number of steps since the last “win-
ner” snapshot was saved, and interrupt training when this number reaches some limit
(e.g., 2,000 steps). Then restore the last “winner” snapshot.

Although early stopping works very well in practice, you can usually get much higher
performance out of your network by combining it with other regularization techni-
ques.

£ and £ Regularization

Just like you did in Chapter 4 for simple linear models, you can use ¢, and ¢, regulari-
zation to constrain a neural network’s connection weights (but typically not its bia-
ses).

One way to do this using TensorFlow is to simply add the appropriate regularization
terms to your cost function. For example, assuming you have just one hidden layer
with weights weights1 and one output layer with weights weights2, then you can
apply ¢, regularization like this:

[...] # construct the neural network

base_loss = tf.reduce_mean(xentropy, name="avg_xentropy")

reg_losses = tf.reduce_sum(tf.abs(weights1)) + tf.reduce_sum(tf.abs(weights2))

loss = tf.add(base_loss, scale * reg_losses, name="loss")
However, if there are many layers, this approach is not very convenient. Fortunately,
TensorFlow provides a better option. Many functions that create variables (such as
get_variable() or fully_connected()) accept a *_regularizer argument for each
created variable (e.g., weights_regularizer). You can pass any function that takes
weights as an argument and returns the corresponding regularization loss. The
11_regularizer(), 12_regularizer(), and 11_12_regularizer() functions return
such functions. The following code puts all this together:

with arg_scope(
[fully_connected],
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weilghts_regularizer=tf.contrib.layers.l1_regularizer(scale=0.01)):
hidden1l = fully_connected(X, n_hidden1, scope="hidden1")
hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")
logits = fully_connected(hidden2, n_outputs, activation_fn=None,scope="out")

This code creates a neural network with two hidden layers and one output layer, and
it also creates nodes in the graph to compute the ¢, regularization loss corresponding
to each layer’s weights. TensorFlow automatically adds these nodes to a special collec-
tion containing all the regularization losses. You just need to add these regularization
losses to your overall loss, like this:

reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = tf.add_n([base_loss] + reg_losses, name="loss")

Don't forget to add the regularization losses to your overall loss, or
else they will simply be ignored.

\

Dropout

The most popular regularization technique for deep neural networks is arguably
dropout. It was proposed® by G. E. Hinton in 2012 and further detailed in a paper® by
Nitish Srivastava et al., and it has proven to be highly successful: even the state-of-
the-art neural networks got a 1-2% accuracy boost simply by adding dropout. This
may not sound like a lot, but when a model already has 95% accuracy, getting a 2%
accuracy boost means dropping the error rate by almost 40% (going from 5% error to
roughly 3%).

It is a fairly simple algorithm: at every training step, every neuron (including the
input neurons but excluding the output neurons) has a probability p of being tem-
porarily “dropped out,” meaning it will be entirely ignored during this training step,
but it may be active during the next step (see Figure 11-9). The hyperparameter p is
called the dropout rate, and it is typically set to 50%. After training, neurons don’t get
dropped anymore. And that’s all (except for a technical detail we will discuss momen-
tarily).

20 “Improving neural networks by preventing co-adaptation of feature detectors,” G. Hinton et al. (2012).

21 “Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” N. Srivastava et al. (2014).
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Figure 11-9. Dropout regularization

It is quite surprising at first that this rather brutal technique works at all. Would a
company perform better if its employees were told to toss a coin every morning to
decide whether or not to go to work? Well, who knows; perhaps it would! The com-
pany would obviously be forced to adapt its organization; it could not rely on any sin-
gle person to fill in the coffee machine or perform any other critical tasks, so this
expertise would have to be spread across several people. Employees would have to
learn to cooperate with many of their coworkers, not just a handful of them. The
company would become much more resilient. If one person quit, it wouldn’t make
much of a difference. It's unclear whether this idea would actually work for compa-
nies, but it certainly does for neural networks. Neurons trained with dropout cannot
co-adapt with their neighboring neurons; they have to be as useful as possible on
their own. They also cannot rely excessively on just a few input neurons; they must
pay attention to each of their input neurons. They end up being less sensitive to slight
changes in the inputs. In the end you get a more robust network that generalizes bet-
ter.

Another way to understand the power of dropout is to realize that a unique neural
network is generated at each training step. Since each neuron can be either present or
absent, there is a total of 2V possible networks (where N is the total number of drop-
pable neurons). This is such a huge number that it is virtually impossible for the same
neural network to be sampled twice. Once you have run a 10,000 training steps, you
have essentially trained 10,000 different neural networks (each with just one training
instance). These neural networks are obviously not independent since they share
many of their weights, but they are nevertheless all different. The resulting neural
network can be seen as an averaging ensemble of all these smaller neural networks.

There is one small but important technical detail. Suppose p = 50, in which case dur-
ing testing a neuron will be connected to twice as many input neurons as it was (on
average) during training. To compensate for this fact, we need to multiply each neu-
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ron’s input connection weights by 0.5 after training. If we don’t, each neuron will get a
total input signal roughly twice as large as what the network was trained on, and it is
unlikely to perform well. More generally, we need to multiply each input connection
weight by the keep probability (1 - p) after training. Alternatively, we can divide each
neuron’s output by the keep probability during training (these alternatives are not
perfectly equivalent, but they work equally well).

To implement dropout using TensorFlow, you can simply apply the dropout() func-
tion to the input layer and to the output of every hidden layer. During training, this
function randomly drops some items (setting them to 0) and divides the remaining
items by the keep probability. After training, this function does nothing at all. The
following code applies dropout regularization to our three-layer neural network:

from import dropout

[...]

is_training = tf.placeholder(tf.bool, shape=(), name='is_training')

keep_prob = 0.5
X_drop = dropout(X, keep_prob, is_training=is_training)

hidden1 = fully_connected(X_drop, n_hidden1, scope="hidden1")
hidden1_drop = dropout(hidden1, keep_prob, is_training=is_training)

hidden2 = fully_connected(hidden1_drop, n_hidden2, scope="hidden2")
hidden2_drop = dropout(hidden2, keep_prob, is_training=is_training)

logits = fully_connected(hidden2_drop, n_outputs, activation_fn=None,
scope="outputs")

You want to use the dropout() function in tensorflow.con
trib.layers, not the one in tensorflow.nn. The first one turns off
(no-op) when not training, which is what you want, while the sec-
ond one does not.

Of course, just like you did earlier for Batch Normalization, you need to set is_train
ing to True when training, and to False when testing.

If you observe that the model is overfitting, you can increase the dropout rate (i.e.,
reduce the keep_prob hyperparameter). Conversely, you should try decreasing the
dropout rate (i.e., increasing keep_prob) if the model underfits the training set. It can
also help to increase the dropout rate for large layers, and reduce it for small ones.

Dropout does tend to significantly slow down convergence, but it usually results in a
much better model when tuned properly. So, it is generally well worth the extra time
and effort.
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Dropconnect is a variant of dropout where individual connections
are dropped randomly rather than whole neurons. In general drop-
out performs better.

Max-Norm Regularization

Another regularization technique that is quite popular for neural networks is called
max-norm regularization: for each neuron, it constrains the weights w of the incom-
ing connections such that || w ||, < r, where r is the max-norm hyperparameter and
|| - ||, is the €, norm.

We typically implement this constraint by computing ||w||, after each training step

and clipping w if needed (w < WW).
2

Reducing r increases the amount of regularization and helps reduce overfitting. Max-
norm regularization can also help alleviate the vanishing/exploding gradients prob-
lems (if you are not using Batch Normalization).

TensorFlow does not provide an off-the-shelf max-norm regularizer, but it is not too
hard to implement. The following code creates a node clip_weights that will clip the
weights variable along the second axis so that each row vector has a maximum norm
of 1.0:

threshold = 1.0
clipped_weights = tf.clip_by_norm(weights, clip_norm=threshold, axes=1)
clip_weights = tf.assign(weights, clipped_weights)

You would then apply this operation after each training step, like so:

with tf.Session() as sess:

[...]

for epoch in range(n_epochs):
[...]
for X_batch, y_batch in zip(X_batches, y_batches):
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
clip_weights.eval()

You may wonder how to get access to the weights variable of each layer. For this you
can simply use a variable scope like this:

hidden1l = fully_connected(X, n_hidden1, scope="hidden1")

with tf.variable_scope("hidden1", reuse=True):
weilghtsl = tf.get_variable("weights")

Alternatively, you can use the root variable scope:

hiddenl = fully_connected(X, n_hidden1l, scope="hidden1")
hidden2 = fully_connected(hidden1, n_hidden2, scope="hidden2")

Avoiding Overfitting Through Regularization | 307



[...]

with tf.variable_scope("", default_name="", reuse=True): # root scope
weightsl = tf.get_variable("hidden1/weights")
weilghts2 = tf.get_variable("hidden2/weights")

If you don't know what the name of a variable is, you can either use TensorBoard to
find out or simply use the global_variables() function and print out all the variable
names:

for variable in tf.global_variables():
print(variable.name)

Although the preceding solution should work fine, it is a bit messy. A cleaner solution
is to create a max_norm_regularizer() function and use it just like the earlier 11_reg
ularizer() function:

def max_norm_regularizer(threshold, axes=1, name="max_norm",
collection="max_norm"):

def max_norm(weights):
clipped = tf.clip_by_norm(weights, clip_norm=threshold, axes=axes)
clip_weights = tf.assign(weights, clipped, name=name)
tf.add_to_collection(collection, clip_weights)
return None # there is no regularization loss term

return max_norm

This function returns a parametrized max_norm() function that you can use like any
other regularizer:

max_norm_reg = max_norm_regularizer(threshold=1.0)
hiddenl = fully_connected(X, n_hiddenl, scope="hidden1",
weilghts_regularizer=max_norm_reg)

Note that max-norm regularization does not require adding a regularization loss term
to your overall loss function, so the max_norm() function returns None. But you still
need to be able to run the clip_weights operation after each training step, so you
need to be able to get a handle on it. This is why the max_norm() function adds the

clip_weights node to a collection of max-norm clipping operations. You need to
fetch these clipping operations and run them after each training step:

clip_all_weights = tf.get_collection("max_norm"

with tf.Session() as sess:
[...]
for epoch in range(n_epochs):
[...]
for X_batch, y_batch in zip(X_batches, y_batches):
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
sess.run(clip_all_weights)

Much cleaner code, isn’t it?
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Data Augmentation

One last regularization technique, data augmentation, consists of generating new
training instances from existing ones, artificially boosting the size of the training set.
This will reduce overfitting, making this a regularization technique. The trick is to
generate realistic training instances; ideally, a human should not be able to tell which
instances were generated and which ones were not. Moreover, simply adding white
noise will not help; the modifications you apply should be learnable (white noise is
not).

For example, if your model is meant to classify pictures of mushrooms, you can
slightly shift, rotate, and resize every picture in the training set by various amounts
and add the resulting pictures to the training set (see Figure 11-10). This forces the
model to be more tolerant to the position, orientation, and size of the mushrooms in
the picture. If you want the model to be more tolerant to lighting conditions, you can
similarly generate many images with various contrasts. Assuming the mushrooms are
symmetrical, you can also flip the pictures horizontally. By combining these transfor-
mations you can greatly increase the size of your training set.

Figure 11-10. Generating new training instances from existing ones

It is often preferable to generate training instances on the fly during training rather
than wasting storage space and network bandwidth. TensorFlow offers several image
manipulation operations such as transposing (shifting), rotating, resizing, flipping,
and cropping, as well as adjusting the brightness, contrast, saturation, and hue (see
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the API documentation for more details). This makes it easy to implement data aug-
mentation for image datasets.

Another powerful technique to train very deep neural networks is
to add skip connections (a skip connection is when you add the
input of a layer to the output of a higher layer). We will explore this
idea in Chapter 13 when we talk about deep residual networks.

Practical Guidelines

In this chapter, we have covered a wide range of techniques and you may be wonder-
ing which ones you should use. The configuration in Table 11-2 will work fine in
most cases.

Table 11-2. Default DNN configuration

Initialization He initialization
Activation function ELU

Normalization Batch Normalization
Regularization Dropout

Optimizer Adam

Learning rate schedule None

Of course, you should try to reuse parts of a pretrained neural network if you can
find one that solves a similar problem.

This default configuration may need to be tweaked:

o Ifyou can't find a good learning rate (convergence was too slow, so you increased
the training rate, and now convergence is fast but the network’s accuracy is sub-
optimal), then you can try adding a learning schedule such as exponential decay.

« If your training set is a bit too small, you can implement data augmentation.

o If you need a sparse model, you can add some ¢, regularization to the mix (and
optionally zero out the tiny weights after training). If you need an even sparser
model, you can try using FTRL instead of Adam optimization, along with ¢, reg-
ularization.

« If you need a lightning-fast model at runtime, you may want to drop Batch Nor-
malization, and possibly replace the ELU activation function with the leaky
ReLU. Having a sparse model will also help.

With these guidelines, you are now ready to train very deep nets—well, if you are
very patient, that is! If you use a single machine, you may have to wait for days or
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even months for training to complete. In the next chapter we will discuss how to use
distributed TensorFlow to train and run models across many servers and GPUs.

Exercises

1. Is it okay to initialize all the weights to the same value as long as that value is
selected randomly using He initialization?

2. Is it okay to initialize the bias terms to 0?
3. Name three advantages of the ELU activation function over ReLU.

4. In which cases would you want to use each of the following activation functions:
ELU, leaky ReLU (and its variants), ReLU, tanh, logistic, and softmax?

5. What may happen if you set the momentum hyperparameter too close to 1 (e.g.,
0.99999) when using a MomentumOptimizer?

6. Name three ways you can produce a sparse model.

7. Does dropout slow down training? Does it slow down inference (i.e., making
predictions on new instances)?

8. Deep Learning.

a. Build a DNN with five hidden layers of 100 neurons each, He initialization,
and the ELU activation function.

b. Using Adam optimization and early stopping, try training it on MNIST but
only on digits 0 to 4, as we will use transfer learning for digits 5 to 9 in the
next exercise. You will need a softmax output layer with five neurons, and as
always make sure to save checkpoints at regular intervals and save the final
model so you can reuse it later.

c. Tune the hyperparameters using cross-validation and see what precision you
can achieve.

d. Now try adding Batch Normalization and compare the learning curves: is it
converging faster than before? Does it produce a better model?

e. Is the model overfitting the training set? Try adding dropout to every layer
and try again. Does it help?

9. Transfer learning.

a. Create a new DNN that reuses all the pretrained hidden layers of the previous
model, freezes them, and replaces the softmax output layer with a fresh new
one.

b. Train this new DNN on digits 5 to 9, using only 100 images per digit, and time
how long it takes. Despite this small number of examples, can you achieve
high precision?
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c. Try caching the frozen layers, and train the model again: how much faster is it

now?

d. Try again reusing just four hidden layers instead of five. Can you achieve a

higher precision?

e. Now unfreeze the top two hidden layers and continue training: can you get

the model to perform even better?

10. Pretraining on an auxiliary task.

a. In this exercise you will build a DNN that compares two MNIST digit images

and predicts whether they represent the same digit or not. Then you will reuse
the lower layers of this network to train an MNIST classifier using very little
training data. Start by building two DNNss (let’s call them DNN A and B), both
similar to the one you built earlier but without the output layer: each DNN
should have five hidden layers of 100 neurons each, He initialization, and ELU
activation. Next, add a single output layer on top of both DNNs. You should
use TensorFlow’s concat() function with axis=1 to concatenate the outputs
of both DNNs along the horizontal axis, then feed the result to the output
layer. This output layer should contain a single neuron using the logistic acti-
vation function.

. Split the MNIST training set in two sets: split #1 should containing 55,000

images, and split #2 should contain contain 5,000 images. Create a function
that generates a training batch where each instance is a pair of MNIST images
picked from split #1. Half of the training instances should be pairs of images
that belong to the same class, while the other half should be images from dif-
ferent classes. For each pair, the training label should be 0 if the images are
from the same class, or 1 if they are from different classes.

. Train the DNN on this training set. For each image pair, you can simultane-

ously feed the first image to DNN A and the second image to DNN B. The
whole network will gradually learn to tell whether two images belong to the
same class or not.

. Now create a new DNN by reusing and freezing the hidden layers of DNN A

and adding a softmax output layer on with 10 neurons. Train this network on
split #2 and see if you can achieve high performance despite having only 500
images per class.

Solutions to these exercises are available in Appendix A.
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CHAPTER 12

Distributing TensorFlow Across
Devices and Servers

In Chapter 11 we discussed several techniques that can considerably speed up train-
ing: better weight initialization, Batch Normalization, sophisticated optimizers, and
so on. However, even with all of these techniques, training a large neural network on
a single machine with a single CPU can take days or even weeks.

In this chapter we will see how to use TensorFlow to distribute computations across
multiple devices (CPUs and GPUs) and run them in parallel (see Figure 12-1). First
we will distribute computations across multiple devices on just one machine, then on
multiple devices across multiple machines.

Figure 12-1. Executing a TensorFlow graph across multiple devices in parallel
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TensorFlow’s support of distributed computing is one of its main highlights com-
pared to other neural network frameworks. It gives you full control over how to split
(or replicate) your computation graph across devices and servers, and it lets you par-
allelize and synchronize operations in flexible ways so you can choose between all
sorts of parallelization approaches.

We will look at some of the most popular approaches to parallelizing the execution
and training of a neural network. Instead of waiting for weeks for a training algo-
rithm to complete, you may end up waiting for just a few hours. Not only does this
save an enormous amount of time, it also means that you can experiment with vari-
ous models much more easily, and frequently retrain your models on fresh data.

Other great use cases of parallelization include exploring a much larger hyperparame-
ter space when fine-tuning your model, and running large ensembles of neural net-
works efficiently.

But we must learn to walk before we can run. Let’s start by parallelizing simple graphs
across several GPUs on a single machine.

Multiple Devices on a Single Machine

You can often get a major performance boost simply by adding GPU cards to a single
machine. In fact, in many cases this will suffice; you won’t need to use multiple
machines at all. For example, you can typically train a neural network just as fast
using 8 GPUs on a single machine rather than 16 GPUs across multiple machines
(due to the extra delay imposed by network communications in a multimachine
setup).

In this section we will look at how to set up your environment so that TensorFlow can
use multiple GPU cards on one machine. Then we will look at how you can distribute
operations across available devices and execute them in parallel.

Installation

In order to run TensorFlow on multiple GPU cards, you first need to make sure your
GPU cards have NVidia Compute Capability (greater or equal to 3.0). This includes
Nvidia’s Titan, Titan X, K20, and K40 cards (if you own another card, you can check
its compatibility at https://developer.nvidia.com/cuda-gpus).
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If you don’t own any GPU cards, you can use a hosting service with
GPU capability such as Amazon AWS. Detailed instructions to set
up TensorFlow 0.9 with Python 3.5 on an Amazon AWS GPU
instance are available in Ziga Avsec’s helpful blog post. It should
not be too hard to update it to the latest version of TensorFlow.
Google also released a cloud service called Cloud Machine Learning
to run TensorFlow graphs. In May 2016, they announced that their
platform now includes servers equipped with tensor processing units
(TPUs), processors specialized for Machine Learning that are much
faster than GPUs for many ML tasks. Of course, another option is
simply to buy your own GPU card. Tim Dettmers wrote a great
blog post to help you choose, and he updates it fairly regularly.

You must then download and install the appropriate version of the CUDA and
cuDNN libraries (CUDA 8.0 and cuDNN 5.1 if you are using the binary installation
of TensorFlow 1.0.0), and set a few environment variables so TensorFlow knows
where to find CUDA and cuDNN. The detailed installation instructions are likely to
change fairly quickly, so it is best that you follow the instructions on TensorFlow’s
website.

Nvidias Compute Unified Device Architecture library (CUDA) allows developers to
use CUDA-enabled GPUs for all sorts of computations (not just graphics accelera-
tion). Nvidias CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated
library of primitives for DNNG. It provides optimized implementations of common
DNN computations such as activation layers, normalization, forward and backward
convolutions, and pooling (see Chapter 13). It is part of Nvidia’s Deep Learning SDK
(note that it requires creating an Nvidia developer account in order to download it).
TensorFlow uses CUDA and cuDNN to control the GPU cards and accelerate com-
putations (see Figure 12-2).

Figure 12-2. TensorFlow uses CUDA and cuDNN to control GPUs and boost DNNs

You can use the nvidia-smi command to check that CUDA is properly installed. It
lists the available GPU cards, as well as processes running on each card:
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$ nvidia-smi
Wed Sep 16 09:50:03 2016

B P +
| NVIDIA-SMI 352.63 Driver Version: 352.63 |
R e D L +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M.
| ; + |
| O GRID K520 Off | 0000:00:03.0 Off | N/A |
| N/A 27C P8 17W / 125W | 11MiB / 4095MiB | 0% Default |
B e L DR T T oo +
R et R +
Processes: GPU Memory |
GPU PID Type Process name Usage

No running processes found |

Finally, you must install TensorFlow with GPU support. If you created an isolated
environment using virtualenv, you first need to activate it:

$ cd SML_PATH # Your ML working directory (e.g., $HOME/ml)
$ source env/bin/activate

Then install the appropriate GPU-enabled version of TensorFlow:
$ pip3 install --upgrade tensorflow-gpu

Now you can open up a Python shell and check that TensorFlow detects and uses
CUDA and cuDNN properly by importing TensorFlow and creating a session:

>>> import as

I [...]/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I [...]/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I [...]/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I [...]/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I [...]/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
>>> sess = tf.Session()

[...]

I [...]/gpu_init.cc:102] Found device 0 with properties:

name: GRID K520

major: 3 minor: O memoryClockRate (GHz) 0.797

pciBusID 0000:00:03.0

Total memory: 4.00GiB

Free memory: 3.95GiB

I [...]/gpu_init.cc:126] DMA: ©

I [...]/gpu_init.cc:136] 0: VY

I [...]/gpu_device.cc:839] Creating TensorFlow device

(/gpu:0) -> (device: 0, name: GRID K520, pci bus id: 0000:00:03.0)

Looks good! TensorFlow detected the CUDA and cuDNN libraries, and it used the
CUDA library to detect the GPU card (in this case an Nvidia Grid K520 card).
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Managing the GPU RAM

By default TensorFlow automatically grabs all the RAM in all available GPUs the first
time you run a graph, so you will not be able to start a second TensorFlow program
while the first one is still running. If you try, you will get the following error:

E [...]/cuda_driver.cc:965] failed to allocate 3.66G (3928915968 bytes) from
: CUDA_ERROR_OUT_OF_MEMORY

One solution is to run each process on different GPU cards. To do this, the simplest
option is to set the CUDA_VISIBLE_DEVICES environment variable so that each process
only sees the appropriate GPU cards. For example, you could start two programs like
this:

$ CUDA_VISIBLE_DEVICES=0,1 python3 program_1.py

# and in another terminal:

$ CUDA_VISIBLE_DEVICES=3,2 python3 program_2.py
Program #1 will only see GPU cards 0 and 1 (numbered 0 and 1, respectively), and
program #2 will only see GPU cards 2 and 3 (numbered 1 and 0, respectively). Every-
thing will work fine (see Figure 12-3).

Figure 12-3. Each program gets two GPUs for itself

Another option is to tell TensorFlow to grab only a fraction of the memory. For
example, to make TensorFlow grab only 40% of each GPU’s memory, you must create
a ConfigProto object, set its gpu_options.per_process_gpu_memory_fraction
option to 0.4, and create the session using this configuration:

config = tf.ConfigProto()

config.gpu_options.per_process_gpu_memory_fraction = 0.4

session = tf.Session(config=config)
Now two programs like this one can run in parallel using the same GPU cards (but
not three, since 3 X 0.4 > 1). See Figure 12-4.
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Figure 12-4. Each program gets all four GPUs, but with only 40% of the RAM each
If you run the nvidia-smi command while both programs are running, you should

see that each process holds roughly 40% of the total RAM of each card:

$ nvidia-smi

[...]

B R R R T +
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
| |
| 0 5231 C python 1677MiB |
| 0 5262 C python 1677MiB |
| 1 5231 C python 1677MiB |
| 1 5262 C python 1677MiB |
[..

-]

Yet another option is to tell TensorFlow to grab memory only when it needs it. To do
this you must set config.gpu_options.allow_growth to True. However, TensorFlow
never releases memory once it has grabbed it (to avoid memory fragmentation) so
you may still run out of memory after a while. It may be harder to guarantee a deter-
ministic behavior using this option, so in general you probably want to stick with one
of the previous options.

Okay, now you have a working GPU-enabled TensorFlow installation. Let’s see how
to use it!

Placing Operations on Devices

The TensorFlow whitepaper' presents a friendly dynamic placer algorithm that auto-
magically distributes operations across all available devices, taking into account
things like the measured computation time in previous runs of the graph, estimations
of the size of the input and output tensors to each operation, the amount of RAM
available in each device, communication delay when transferring data in and out of

1 “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,” Google Research
(2015).
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devices, hints and constraints from the user, and more. Unfortunately, this sophistica-
ted algorithm is internal to Google; it was not released in the open source version of
TensorFlow. The reason it was left out seems to be that in practice a small set of place-
ment rules specified by the user actually results in more efficient placement than what
the dynamic placer is capable of. However, the TensorFlow team is working on
improving the dynamic placer, and perhaps it will eventually be good enough to be
released.

Until then TensorFlow relies on the simple placer, which (as its name suggests) is very
basic.

Simple placement

Whenever you run a graph, if TensorFlow needs to evaluate a node that is not placed
on a device yet, it uses the simple placer to place it, along with all other nodes that are
not placed yet. The simple placer respects the following rules:

o If a node was already placed on a device in a previous run of the graph, it is left
on that device.

o Else, if the user pinned a node to a device (described next), the placer places it on
that device.

« Else, it defaults to GPU #0, or the CPU if there is no GPU.

As you can see, placing operations on the appropriate device is mostly up to you. If
you don’t do anything, the whole graph will be placed on the default device. To pin
nodes onto a device, you must create a device block using the device() function. For
example, the following code pins the variable a and the constant b on the CPU, but
the multiplication node c is not pinned on any device, so it will be placed on the
default device:

with tf.device("/cpu:0"):

= tf.Variable(3.0)
b = tf.constant(4.0)

[+7]

c=a*b

The "/cpu:0" device aggregates all CPUs on a multi-CPU system.
There is currently no way to pin nodes on specific CPUs or to use
just a subset of all CPUs.
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Logging placements

Lets check that the simple placer respects the placement constraints we have just
defined. For this you can set the log_device_placement option to True; this tells the
placer to log a message whenever it places a node. For example:

>>> config = tf.ConfigProto()

>>> config.log_device_placement = True

>>> sess = tf.Session(config=config)

I [...] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GRID K520,
pci bus id: 0000:00:03.0)

[...]

>>> x.initializer.run(session=sess)

..] a: [job:localhost/replica:0/task:0/cpu:0

..] a/read: /job:localhost/replica:0/task:0/cpu:0

mul: /job:localhost/replica:0/task:0/gpu:0

a/Assign: /job:localhost/replica:0/task:0/cpu:0

..] b: /job:localhost/replica:0/task:0/cpu:0

[...] a/initial_value: /job:localhost/replica:0/task:0/cpu:0
>>> sess.run(c)

12

e N N N W |
—_

I
I
I
I
I
I

The lines starting with "I" for Info are the log messages. When we create a session,
TensorFlow logs a message to tell us that it has found a GPU card (in this case the
Grid K520 card). Then the first time we run the graph (in this case when initializing
the variable a), the simple placer is run and places each node on the device it was
assigned to. As expected, the log messages show that all nodes are placed on "/cpu:0"
except the multiplication node, which ends up on the default device "/gpu:0" (you
can safely ignore the prefix /job:localhost/replica:@/task:0 for now; we will talk
about it in a moment). Notice that the second time we run the graph (to compute c),
the placer is not used since all the nodes TensorFlow needs to compute c are already
placed.

Dynamic placement function

When you create a device block, you can specify a function instead of a device name.
TensorFlow will call this function for each operation it needs to place in the device
block, and the function must return the name of the device to pin the operation on.
For example, the following code pins all the variable nodes to "/cpu:0" (in this case
just the variable a) and all other nodes to " /gpu:0":

def variables_on_cpu(op):
if op.type == "Variable":
return "/cpu:0"
else:
return "/gpu:0"

with tf.device(variables_on_cpu):
a = tf.vVariable(3.0)
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tf.constant(4.0)

c=a*b
You can easily implement more complex algorithms, such as pinning variables across
GPUs in a round-robin fashion.

Operations and kernels

For a TensorFlow operation to run on a device, it needs to have an implementation
for that device; this is called a kernel. Many operations have kernels for both CPUs
and GPUs, but not all of them. For example, TensorFlow does not have a GPU kernel
for integer variables, so the following code will fail when TensorFlow tries to place the
variable 1 on GPU #0:

>>> with tf.device("/gpu:0"):
v i = tf.variable(3)
[...]

>>> sess.run(i.initializer)

Eensgrflow.python.framework.errors.InvalidArgumentError: Cannot assign a device
to node 'Variable': Could not satisfy explicit device specification
Note that TensorFlow infers that the variable must be of type int32 since the initiali-
zation value is an integer. If you change the initialization value to 3.0 instead of 3, or
if you explicitly set dtype=tf.float32 when creating the variable, everything will
work fine.

Soft placement

By default, if you try to pin an operation on a device for which the operation has no
kernel, you get the exception shown earlier when TensorFlow tries to place the opera-
tion on the device. If you prefer TensorFlow to fall back to the CPU instead, you can
set the allow_soft_placement configuration option to True:

with tf.device("/gpu:0"):
i = tf.variable(3)

config = tf.ConfigProto()

config.allow_soft_placement = True

sess = tf.Session(config=config)

sess.run(i.initializer) # the placer runs and falls back to /cpu:0
So far we have discussed how to place nodes on different devices. Now let’s see how
TensorFlow will run these nodes in parallel.

Parallel Execution

When TensorFlow runs a graph, it starts by finding out the list of nodes that need to
be evaluated, and it counts how many dependencies each of them has. TensorFlow
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then starts evaluating the nodes with zero dependencies (i.e., source nodes). If these
nodes are placed on separate devices, they obviously get evaluated in parallel. If they
are placed on the same device, they get evaluated in different threads, so they may run
in parallel too (in separate GPU threads or CPU cores).

TensorFlow manages a thread pool on each device to parallelize operations (see
Figure 12-5). These are called the inter-op thread pools. Some operations have multi-
threaded kernels: they can use other thread pools (one per device) called the intra-op
thread pools.

Figure 12-5. Parallelized execution of a TensorFlow graph

For example, in Figure 12-5, operations A, B, and C are source ops, so they can
immediately be evaluated. Operations A and B are placed on GPU #0, so they are sent
to this device’s inter-op thread pool, and immediately evaluated in parallel. Operation
A happens to have a multithreaded kernel; its computations are split in three parts,
which are executed in parallel by the intra-op thread pool. Operation C goes to GPU
#1’s inter-op thread pool.

As soon as operation C finishes, the dependency counters of operations D and E will
be decremented and will both reach 0, so both operations will be sent to the inter-op
thread pool to be executed.

You can control the number of threads per inter-op pool by setting
the inter_op_parallelism_threads option. Note that the first ses-
sion you start creates the inter-op thread pools. All other sessions
will just reuse them unless you set the use_per_session_threads
option to True. You can control the number of threads per intra-op
pool by setting the intra_op_parallelism_threads option.
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Control Dependencies

In some cases, it may be wise to postpone the evaluation of an operation even though
all the operations it depends on have been executed. For example, if it uses a lot of
memory but its value is needed only much further in the graph, it would be best to
evaluate it at the last moment to avoid needlessly occupying RAM that other opera-
tions may need. Another example is a set of operations that depend on data located
outside of the device. If they all run at the same time, they may saturate the device’s
communication bandwidth, and they will end up all waiting on I/O. Other operations
that need to communicate data will also be blocked. It would be preferable to execute
these communication-heavy operations sequentially, allowing the device to perform
other operations in parallel.

To postpone evaluation of some nodes, a simple solution is to add control dependen-
cies. For example, the following code tells TensorFlow to evaluate x and y only after a
and b have been evaluated:

a = tf.constant(1.0)
b=a+2.0

with tf.control_dependencies([a, b]):
x = tf.constant(3.0)
y = tf.constant(4.0)

Z=XxX+y

Obviously, since z depends on x and y, evaluating z also implies waiting for a and b to
be evaluated, even though it is not explicitly in the control_dependencies() block.
Also, since b depends on a, we could simplify the preceding code by just creating a
control dependency on [b] instead of [a, b], but in some cases “explicit is better
than implicit”

Great! Now you know:

« How to place operations on multiple devices in any way you please
« How these operations get executed in parallel

« How to create control dependencies to optimize parallel execution

It’s time to distribute computations across multiple servers!

Multiple Devices Across Multiple Servers

To run a graph across multiple servers, you first need to define a cluster. A cluster is
composed of one or more TensorFlow servers, called tasks, typically spread across
several machines (see Figure 12-6). Each task belongs to a job. A job is just a named
group of tasks that typically have a common role, such as keeping track of the model
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parameters (such a job is usually named "ps" for parameter server), or performing
computations (such a job is usually named "worker").

Figure 12-6. TensorFlow cluster

The following cluster specification defines two jobs, "ps" and "worker", containing
one task and two tasks, respectively. In this example, machine A hosts two Tensor-
Flow servers (i.e., tasks), listening on different ports: one is part of the "ps" job, and
the other is part of the "worker" job. Machine B just hosts one TensorFlow server,
part of the "worker" job.

cluster_spec = tf.train.ClusterSpec({
"os': [
"machine-a.example.com:2221", # /job:ps/task:0
]’

"worker": [
"machine-a.example.com:2222", # /job:worker/task:0
"machine-b.example.com:2222", # /job:worker/task:1

b))

To start a TensorFlow server, you must create a Server object, passing it the cluster
specification (so it can communicate with other servers) and its own job name and
task number. For example, to start the first worker task, you would run the following
code on machine A:

server = tf.train.Server(cluster_spec, job_name="worker", task_index=0)

It is usually simpler to just run one task per machine, but the previous example dem-
onstrates that TensorFlow allows you to run multiple tasks on the same machine if
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you want.? If you have several servers on one machine, you will need to ensure that
they don't all try to grab all the RAM of every GPU, as explained earlier. For example,
in Figure 12-6 the "ps" task does not see the GPU devices, since presumably its pro-
cess was launched with CUDA_VISIBLE_DEVICES="". Note that the CPU is shared by
all tasks located on the same machine.

If you want the process to do nothing other than run the TensorFlow server, you can
block the main thread by telling it to wait for the server to finish using the join()
method (otherwise the server will be killed as soon as your main thread exits). Since
there is currently no way to stop the server, this will actually block forever:

server.join() # blocks until the server stops (i.e., never)

Opening a Session

Once all the tasks are up and running (doing nothing yet), you can open a session on
any of the servers, from a client located in any process on any machine (even from a
process running one of the tasks), and use that session like a regular local session. For
example:

a = tf.constant(1.0)

b=a+2
c=a*3

with tf.Session("grpc://machine-b.example.com:2222") as sess:
print(c.eval()) # 9.0
This client code first creates a simple graph, then opens a session on the TensorFlow
server located on machine B (which we will call the master), and instructs it to evalu-
ate c. The master starts by placing the operations on the appropriate devices. In this
example, since we did not pin any operation on any device, the master simply places
them all on its own default device—in this case, machine B’s GPU device. Then it just
evaluates c as instructed by the client, and it returns the result.

The Master and Worker Services

The client uses the gRPC protocol (Google Remote Procedure Call) to communicate
with the server. This is an efficient open source framework to call remote functions
and get their outputs across a variety of platforms and languages.’ It is based on
HTTP2, which opens a connection and leaves it open during the whole session,
allowing efficient bidirectional communication once the connection is established.

2 You can even start multiple tasks in the same process. It may be useful for tests, but it is not recommended in
production.

3 It is the next version of Google’s internal Stubby service, which Google has used successfully for over a decade.
See http://grpc.io/ for more details.

Multiple Devices Across Multiple Servers | 325


http://grpc.io/

Data is transmitted in the form of protocol buffers, another open source Google tech-
nology. This is a lightweight binary data interchange format.

All servers in a TensorFlow cluster may communicate with any
other server in the cluster, so make sure to open the appropriate
ports on your firewall.

\

Every TensorFlow server provides two services: the master service and the worker ser-
vice. The master service allows clients to open sessions and use them to run graphs. It
coordinates the computations across tasks, relying on the worker service to actually
execute computations on other tasks and get their results.

This architecture gives you a lot of flexibility. One client can connect to multiple
servers by opening multiple sessions in different threads. One server can handle mul-
tiple sessions simultaneously from one or more clients. You can run one client per
task (typically within the same process), or just one client to control all tasks. All
options are open.

Pinning Operations Across Tasks

You can use device blocks to pin operations on any device managed by any task, by
specifying the job name, task index, device type, and device index. For example, the
following code pins a to the CPU of the first task in the "ps" job (thats the CPU on
machine A), and it pins b to the second GPU managed by the first task of the
"worker" job (that's GPU #1 on machine A). Finally, c is not pinned to any device, so
the master places it on its own default device (machine B’s GPU #0 device).

with tf.device("/job:ps/task:0/cpu:0")
a = tf.constant(1.0)

with tf.device("/job:worker/task:0/gpu:1")
b=a+2

c=a+b

As earlier, if you omit the device type and index, TensorFlow will default to the task’s
default device; for example, pinning an operation to "/job:ps/task:8" will place it
on the default device of the first task of the "ps" job (machine As CPU). If you also
omit the task index (e.g., "/job:ps"), TensorFlow defaults to "/task:0". If you omit
the job name and the task index, TensorFlow defaults to the session’s master task.
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Sharding Variables Across Multiple Parameter Servers

As we will see shortly, a common pattern when training a neural network on a dis-
tributed setup is to store the model parameters on a set of parameter servers (i.e., the
tasks in the "ps" job) while other tasks focus on computations (i.e., the tasks in the
"worker" job). For large models with millions of parameters, it is useful to shard
these parameters across multiple parameter servers, to reduce the risk of saturating a
single parameter server’s network card. If you were to manually pin every variable to
a different parameter server, it would be quite tedious. Fortunately, TensorFlow pro-
vides the replica_device setter() function, which distributes variables across all
the "ps" tasks in a round-robin fashion. For example, the following code pins five
variables to two parameter servers:

with tf.device(tf.train.replica_device_setter(ps_tasks=2):

vl = tf.Variable(1.0) # pinned to /job:ps/task:0
v2 = tf.Variable(2.0) # pinned to /job:ps/task:1
v3 = tf.Variable(3.0) # pinned to /job:ps/task:0

v4 = tf.Variable(4.0) # pinned to /job:ps/task:1

v5 = tf.Variable(5.0) # pinned to /job:ps/task:0
Instead of passing the number of ps_tasks, you can pass the cluster spec clus
ter=cluster_spec and TensorFlow will simply count the number of tasks in the "ps"

job.

If you create other operations in the block, beyond just variables, TensorFlow auto-
matically pins them to "/job:worker", which will default to the first device managed
by the first task in the "worker" job. You can pin them to another device by setting
the worker_device parameter, but a better approach is to use embedded device
blocks. An inner device block can override the job, task, or device defined in an outer
block. For example:

with tf.device(tf.train.replica_device_setter(ps_tasks=2)):
vl = tf.Variable(1.0) # pinned to /job:ps/task:0 (+ defaults to /cpu:0)

v2 = tf.variable(2.0) # pinned to /job:ps/task:1 (+ defaults to /cpu:0)
v3 = tf.Variable(3.0) # pinned to /job:ps/task:0 (+ defaults to /cpu:0)
[...]
s = vl + v2 # pinned to /job:worker (+ defaults to task:0/gpu:@)
with tf.device("/gpu:1"):

pl =2 * s # pinned to /job:worker/gpu:1 (+ defaults to /task:0)

with tf.device("/task:1"):

p2 =3 * s # pinned to /job:worker/task:1/gpu:1

This example assumes that the parameter servers are CPU-only,
which is typically the case since they only need to store and com-
municate parameters, not perform intensive computations.
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Sharing State Across Sessions Using Resource Containers

When you are using a plain local session (not the distributed kind), each variable’s
state is managed by the session itself; as soon as it ends, all variable values are lost.
Moreover, multiple local sessions cannot share any state, even if they both run the
same graph; each session has its own copy of every variable (as we discussed in Chap-
ter 9). In contrast, when you are using distributed sessions, variable state is managed
by resource containers located on the cluster itself, not by the sessions. So if you create
a variable named x using one client session, it will automatically be available to any
other session on the same cluster (even if both sessions are connected to a different
server). For example, consider the following client code:

# simple_client.py
import as
import

x = tf.variable(0.0, name="x")
increment_x = tf.assign(x, x + 1)

with tf.Session(sys.argv[1]) as sess:
if sys.argv[2:]==["1nit"]:
sess.run(x.initializer)
sess.run(increment_x)
print(x.eval())

Let’s suppose you have a TensorFlow cluster up and running on machines A and B,
port 2222. You could launch the client, have it open a session with the server on
machine A, and tell it to initialize the variable, increment it, and print its value by
launching the following command:

$ python3 simple_client.py grpc://machine-a.example.com:2222 init
1.0

Now if you launch the client with the following command, it will connect to the

server on machine B and magically reuse the same variable x (this time we don’t ask
the server to initialize the variable):

$ python3 simple_client.py grpc://machine-b.example.com:2222
2.0

This feature cuts both ways: it’s great if you want to share variables across multiple
sessions, but if you want to run completely independent computations on the same
cluster you will have to be careful not to use the same variable names by accident.
One way to ensure that you won't have name clashes is to wrap all of your construc-
tion phase inside a variable scope with a unique name for each computation, for
example:

with tf.variable_scope("my_problem_1"):
[...] # Construction phase of problem 1
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A better option is to use a container block:

with tf.container("my_problem_1"):
[...] # Construction phase of problem 1
This will use a container dedicated to problem #1, instead of the default one (whose
name is an empty string ""). One advantage is that variable names remain nice and
short. Another advantage is that you can easily reset a named container. For example,
the following command will connect to the server on machine A and ask it to reset
the container named "my_problem_1", which will free all the resources this container
used (and also close all sessions open on the server). Any variable managed by this
container must be initialized before you can use it again:

tf.Session.reset("grpc://machine-a.example.com:2222", ["my_problem_1"])

Resource containers make it easy to share variables across sessions in flexible ways.
For example, Figure 12-7 shows four clients running different graphs on the same
cluster, but sharing some variables. Clients A and B share the same variable x man-
aged by the default container, while clients C and D share another variable named x
managed by the container named "my_problem_1". Note that client C even uses vari-
ables from both containers.

Figure 12-7. Resource containers

Resource containers also take care of preserving the state of other stateful operations,
namely queues and readers. Let’s take a look at queuses first.

Asynchronous Communication Using TensorFlow Queues

Queues are another great way to exchange data between multiple sessions; for exam-
ple, one common use case is to have a client create a graph that loads the training data
and pushes it into a queue, while another client creates a graph that pulls the data
from the queue and trains a model (see Figure 12-8). This can speed up training con-
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siderably because the training operations don’t have to wait for the next mini-batch at
every step.

Figure 12-8. Using queues to load the training data asynchronously

TensorFlow provides various kinds of queues. The simplest kind is the first-in first-
out (FIFO) queue. For example, the following code creates a FIFO queue that can
store up to 10 tensors containing two float values each:

q = tf.FIFOQueue(capacity=10, dtypes=[tf.float32], shapes=[[2]],

name="q", shared_name="shared_q")

To share variables across sessions, all you had to do was to specify
the same name and container on both ends. With queues Tensor-
Flow does not use the name attribute but instead uses shared_name,
so it is important to specify it (even if it is the same as the name).
And, of course, use the same container.

Enqueuing data

To push data to a queue, you must create an enqueue operation. For example, the fol-
lowing code pushes three training instances to the queue:

# training_data_loader.py
import as

q=1[...]
training_1instance = tf.placeholder(tf.float32, shape=(2))
enqueue = g.enqueue([training_1instance])

with tf.Session("grpc://machine-a.example.com:2222") as sess:
sess.run(enqueue, feed_dict={training_1instance: [1., 2.]})
sess.run(enqueue, feed_dict={training_instance: [3., 4.]})
sess.run(enqueue, feed_dict={training_1instance: [5., 6.]})
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Instead of enqueuing instances one by one, you can enqueue several at a time using
an enqueue_many operation:

[...]
training_instances = tf.placeholder(tf.float32, shape=(None, 2))

enqueue_many = q.enqueue([training_instances])

with tf.Session("grpc://machine-a.example.com:2222") as sess:
sess.run(enqueue_many,
feed_dict={training_1instances: [[1., 2.], [3., 4.1, [5., 6.]11})

Both examples enqueue the same three tensors to the queue.

Dequeuing data
To pull the instances out of the queue, on the other end, you need to use a dequeue
operation:

# trainer.py
import as

q=1[...]

dequeue = q.dequeue()

with tf.Session("grpc://machine-a.example.com:2222") as sess:
print(sess.run(dequeue)) # [1., 2.]
print(sess.run(dequeue)) # [3., 4.]
print(sess.run(dequeue)) # [5., 6.]
In general you will want to pull a whole mini-batch at once, instead of pulling just
one instance at a time. To do so, you must use a dequeue_many operation, specifying
the mini-batch size:

[...]
batch_size = 2
dequeue_mini_batch= q.dequeue_many(batch_size)

with tf.Session("grpc://machine-a.example.com:2222") as sess:

print(sess.run(dequeue_mini_batch)) # [[1., 2.], [4., 5.]]

print(sess.run(dequeue_mini_batch)) # blocked waiting for another instance
When a queue is full, the enqueue operation will block until items are pulled out by a
dequeue operation. Similarly, when a queue is empty (or you are using
dequeue_many() and there are fewer items than the mini-batch size), the dequeue
operation will block until enough items are pushed into the queue using an enqueue
operation.
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Queues of tuples

Each item in a queue can be a tuple of tensors (of various types and shapes) instead of
just a single tensor. For example, the following queue stores pairs of tensors, one of
type int32 and shape (), and the other of type float32 and shape [3,2]:

q = tf.FIFOQueue(capacity=10, dtypes=[tf.int32, tf.float32], shapes=[[],[3,21],

name="q", shared_name="shared_q")

The enqueue operation must be given pairs of tensors (note that each pair represents
only one item in the queue):

a = tf.placeholder(tf.int32, shape=())
b = tf.placeholder(tf.float32, shape=(3, 2))
enqueue = g.enqueue((a, b))

with tf.Session([...]) as sess:
sess.run(enqueue, feed_dict={a: 10, b:[[1., 2.1, [3., 4.1, [5., 6.11})
sess.run(enqueue, feed_dict={a: 11, b:[[2., 4.], [6., 8.1, [0., 2.]11})
sess.run(enqueue, feed_dict={a: 12, b:[[3., 6.1, [9., 2.1, [5., 8.11})

On the other end, the dequeue() function now creates a pair of dequeue operations:
dequeue_a, dequeue_b = q.dequeue()
In general, you should run these operations together:

with tf.Session([...]) as sess:
a_val, b_val = sess.run([dequeue_a, dequeue_b])
print(a_val) # 10
print(b_val) # [[1., 2.], [3., 4.], [5., 6.]]

If you run dequeue_a on its own, it will dequeue a pair and return
only the first element; the second element will be lost (and simi-
larly, if you run dequeue_b on its own, the first element will be
lost).

The dequeue_many() function also returns a pair of operations:

batch_size = 2
dequeue_as, dequeue_bs = q.dequeue_many(batch_size)

You can use it as you would expect:

with tf.Session([...]) as sess:
a, b = sess.run([dequeue_a, dequeue_b])
print(a) # [10, 11]
print(b) # [[[1., 2.], [3., 4.], [5., 6.]], [[2., 4.], [6., 8.], [0., 2.]]]

a, b = sess.run([dequeue_a, dequeue_b]) # blocked waiting for another pair
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Closing a queue

It is possible to close a queue to signal to the other sessions that no more data will be
enqueued:

close_gq = q.close()

with tf.Session([...]) as sess:
[...]
sess.run(close_q)
Subsequent executions of enqueue or enqueue_many operations will raise an excep-
tion. By default, any pending enqueue request will be honored, unless you call
q.close(cancel_pending_enqueues=True).

Subsequent executions of dequeue or dequeue_many operations will continue to suc-
ceed as long as there are items in the queue, but they will fail when there are not
enough items left in the queue. If you are using a dequeue_many operation and there
are a few instances left in the queue, but fewer than the mini-batch size, they will be
lost. You may prefer to use a dequeue_up_to operation instead; it behaves exactly like
dequeue_many except when a queue is closed and there are fewer than batch_size
instances left in the queue, in which case it just returns them.

RandomShuffleQueue

TensorFlow also supports a couple more types of queues, including RandomShuffle
Queue, which can be used just like a FIFOQueue except that items are dequeued in a
random order. This can be useful to shuffle training instances at each epoch during
training. First, let’s create the queue:

q = tf.RandomShuffleQueue(capacity=50, min_after_dequeue=10,
dtypes=[tf.float32], shapes=[()],

name="q", shared_name="shared_q")

The min_after_dequeue specifies the minimum number of items that must remain in
the queue after a dequeue operation. This ensures that there will be enough instances
in the queue to have enough randomness (once the queue is closed, the
min_after_dequeue limit is ignored). Now suppose that you enqueued 22 items in
this queue (floats 1. to 22.). Here is how you could dequeue them:

dequeue = q.dequeue_many(5)

with tf.Session([...]) as sess:
print(sess.run(dequeue)) # [ 20. 15. 11. 12. 4.] (17 items left)
print(sess.run(dequeue)) # [ 5. 13. 6. 0. 17.] (12 items left)
print(sess.run(dequeue)) # 12 - 5 < 10: blocked waiting for 3 more instances
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PaddingFifoQueue

A PaddingFIFOQueue can also be used just like a FIFOQueue except that it accepts ten-
sors of variable sizes along any dimension (but with a fixed rank). When you are
dequeuing them with a dequeue_many or dequeue_up_to operation, each tensor is
padded with zeros along every variable dimension to make it the same size as the
largest tensor in the mini-batch. For example, you could enqueue 2D tensors (matri-
ces) of arbitrary sizes:

q = tf.PaddingFIFOQueue(capacity=50, dtypes=[tf.float32], shapes=[(None, None)]

name="q", shared_name="shared_q")
v = tf.placeholder(tf.float32, shape=(None, None))

enqueue = g.enqueue([v])

with tf.Session([...]) as sess:
sess.run(enqueue, feed_dict={v: [[1., 2.], [3., 4.1, [5., 6.11}) # 3x2
sess.run(enqueue, feed_dict={v: [[1.]1]}) # 1x1
sess.run(enqueue, feed_dict={v: [[7., 8., 9., 5.], [6., 7., 8., 9.]1}) # 2x4

If we just dequeue one item at a time, we get the exact same tensors that were
enqueued. But if we dequeue several items at a time (using dequeue_many() or
dequeue_up_to()), the queue automatically pads the tensors appropriately. For exam-
ple, if we dequeue all three items at once, all tensors will be padded with zeros to
become 3 x 4 tensors, since the maximum size for the first dimension is 3 (first item)
and the maximum size for the second dimension is 4 (third item):

>>>q = [...]
>>> dequeue = q.dequeue_many(3)
>>> with tf.Session([...]) as sess:
v print(sess.run(dequeue))
[[[ 1. 2. ©. 0.]

[ 3. 4. 0. 0.]

[ 5. 6. 0. 0.]]

[[ 1. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 8. 0. 0.]]
[[ 7. 8. 9. 5.]
[6. 7. 8. 9.]
[ 0. 0. 0. 0.]1]

This type of queue can be useful when you are dealing with variable length inputs,
such as sequences of words (see Chapter 14).

Okay, now let’s pause for a second: so far you have learned to distribute computations
across multiple devices and servers, share variables across sessions, and communicate
asynchronously using queues. Before you start training neural networks, though,
there’s one last topic we need to discuss: how to efficiently load training data.
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Loading Data Directly from the Graph

So far we have assumed that the clients would load the training data and feed it to the
cluster using placeholders. This is simple and works quite well for simple setups, but
it is rather inefficient since it transfers the training data several times:

1. From the filesystem to the client
2. From the client to the master task

3. Possibly from the master task to other tasks where the data is needed

It gets worse if you have several clients training various neural networks using the
same training data (for example, for hyperparameter tuning): if every client loads the

data simultaneously, you may end up even saturating your file server or the network’s
bandwidth.

Preload the data into a variable

For datasets that can fit in memory, a better option is to load the training data once
and assign it to a variable, then just use that variable in your graph. This is called
preloading the training set. This way the data will be transferred only once from the
client to the cluster (but it may still need to be moved around from task to task
depending on which operations need it). The following code shows how to load the
full training set into a variable:

training_set_init = tf.placeholder(tf.float32, shape=(None, n_features))
training_set = tf.Variable(training_set_init, trainable=False, collections=[],
name="training_set")

with tf.Session([...]) as sess:
data = [...] # load the training data from the datastore
sess.run(training_set.initializer, feed_dict={training_set_init: data})
You must set trainable=False so the optimizers don't try to tweak this variable. You
should also set collections=[] to ensure that this variable won’t get added to the
GraphKeys.GLOBAL_VARIABLES collection, which is used for saving and restoring
checkpoints.

This example assumes that all of your training set (including the
labels) consists only of float32 values. If thats not the case, you
will need one variable per type.

Reading the training data directly from the graph

If the training set does not fit in memory, a good solution is to use reader operations:
these are operations capable of reading data directly from the filesystem. This way the
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training data never needs to flow through the clients at all. TensorFlow provides read-
ers for various file formats:

« CSV

« Fixed-length binary records

o TensorFlow’s own TFRecords format, based on protocol buffers
Lets look at a simple example reading from a CSV file (for other formats, please
check out the API documentation). Suppose you have file named my_test.csv that
contains training instances, and you want to create operations to read it. Suppose it

has the following content, with two float features x1 and x2 and one integer target
representing a binary class:

x1, x2, target

1. ,2.,0
4. , 5 , 1
7., , 0

First, let’s create a TextLineReader to read this file. A TextLineReader opens a file
(once we tell it which one to open) and reads lines one by one. It is a stateful opera-
tion, like variables and queues: it preserves its state across multiple runs of the graph,

keeping track of which file it is currently reading and what its current position is in
this file.

reader = tf.TextLineReader(skip_header_lines=1)

Next, we create a queue that the reader will pull from to know which file to read next.
We also create an enqueue operation and a placeholder to push any filename we want
to the queue, and we create an operation to close the queue once we have no more
files to read:

filename_queue = tf.FIFOQueue(capacity=10, dtypes=[tf.string], shapes=[()])
filename = tf.placeholder(tf.string)

enqueue_filename = filename_queue.enqueue([filename])

close_filename_queue = filename_queue.close()

Now we are ready to create a read operation that will read one record (i.e., a line) at a
time and return a key/value pair. The key is the record’s unique identifier—a string
composed of the filename, a colon (:), and the line number—and the value is simply
a string containing the content of the line:

key, value = reader.read(filename_queue)

We have all we need to read the file line by line! But we are not quite done yet—we
need to parse this string to get the features and target:

x1, X2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-111)
features = tf.stack([x1, x2])
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The first line uses TensorFlow’s CSV parser to extract the values from the current
line. The default values are used when a field is missing (in this example the third
training instance’s x2 feature), and they are also used to determine the type of each
field (in this case two floats and one integer).

Finally, we can push this training instance and its target to a RandomShuffleQueue
that we will share with the training graph (so it can pull mini-batches from it), and we
create an operation to close that queue when we are done pushing instances to it:

instance_queue = tf.RandomShuffleQueue(

capacity=10, min_after_dequeue=2,

dtypes=[tf.float32, tf.int32], shapes=[[2],[]1],

name="1instance_q", shared_name="shared_instance_q")
enqueue_instance = instance_queue.enqueue([features, target])
close_1instance_gueue = instance_queue.close()

Wow! That was a lot of work just to read a file. Plus we only created the graph, so now
we need to run it:

with tf.Session([...]) as sess:

sess.run(enqueue_filename, feed_dict={filename: "my_test.csv"})
sess.run(close_filename_queue)
try:

while True:

sess.run(engueue_1instance)

except tf.errors.OutOfRangeError as ex:

pass # no more records in the current file and no more files to read
sess.run(close_instance_queue)

First we open the session, and then we enqueue the filename "my_test.csv" and
immediately close that queue since we will not enqueue any more filenames. Then we
run an infinite loop to enqueue instances one by one. The enqueue_instance
depends on the reader reading the next line, so at every iteration a new record is read
until it reaches the end of the file. At that point it tries to read the filename queue to
know which file to read next, and since the queue is closed it throws an OutOfRan
geError exception (if we did not close the queue, it would just remain blocked until
we pushed another filename or closed the queue). Lastly, we close the instance queue
so that the training operations pulling from it won't get blocked forever. Figure 12-9
summarizes what we have learned; it represents a typical graph for reading training
instances from a set of CSV files.
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Figure 12-9. A graph dedicated to reading training instances from CSV files

In the training graph, you need to create the shared instance queue and simply
dequeue mini-batches from it:

instance_queue = tf.RandomShuffleQueue([...], shared_name="shared_1instance_g")
mini_batch_instances, mini_batch_targets = instance_queue.dequeue_up_to(2)
[...] # use the mini_batch instances and targets to build the training graph
training_op = [...]

with tf.Session([...]) as sess:
try:
for step in range(max_steps):
sess.run(training_op)
except tf.errors.OutOfRangeError as ex:
pass # no more training instances

In this example, the first mini-batch will contain the first two instances of the CSV
file, and the second mini-batch will contain the last instance.

TensorFlow queues don’t handle sparse tensors well, so if your
training instances are sparse you should parse the records after the
instance queue.

\

This architecture will only use one thread to read records and push them to the
instance queue. You can get a much higher throughput by having multiple threads
read simultaneously from multiple files using multiple readers. Let’s see how.

Multithreaded readers using a Coordinator and a QueueRunner

To have multiple threads read instances simultaneously, you could create Python
threads (using the threading module) and manage them yourself. However, Tensor-
Flow provides some tools to make this simpler: the Coordinator class and the QueueR
unner class.
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A Coordinator is a very simple object whose sole purpose is to coordinate stopping
multiple threads. First you create a Coordinator:

coord = tf.train.Coordinator()

Then you give it to all threads that need to stop jointly, and their main loop looks like
this:

while not coord.should_stop():
[...] # do something

Any thread can request that every thread stop by calling the Coordinator’s
request_stop() method:

coord.request_stop()

Every thread will stop as soon as it finishes its current iteration. You can wait for all of
the threads to finish by calling the Coordinator’s join() method, passing it the list of
threads:

coord. join(list_of_threads)

A QueueRunner runs multiple threads that each run an enqueue operation repeatedly,
filling up a queue as fast as possible. As soon as the queue is closed, the next thread
that tries to push an item to the queue will get an OutOfRangeError; this thread
catches the error and immediately tells other threads to stop using a Coordinator.
The following code shows how you can use a QueueRunner to have five threads read-
ing instances simultaneously and pushing them to an instance queue:

[...] # same construction phase as earlier
queue_runner = tf.train.QueueRunner(instance_queue, [enqueue_instance] * 5)

with tf.Session() as sess:
sess.run(enqueue_filename, feed_dict={filename: "my_test.csv"})
sess.run(close_filename_queue)
coord = tf.train.Coordinator()
enqueue_threads = queue_runner.create_threads(sess, coord=coord, start=True)

The first line creates the QueueRunner and tells it to run five threads, all running the
same enqueue_instance operation repeatedly. Then we start a session and we
enqueue the name of the files to read (in this case just "my_test.csv"). Next we cre-
ate a Coordinator that the QueueRunner will use to stop gracefully, as just explained.
Finally, we tell the QueueRunner to create the threads and start them. The threads will
read all training instances and push them to the instance queue, and then they will all
stop gracefully.

This will be a bit more efficient than earlier, but we can do better. Currently all
threads are reading from the same file. We can make them read simultaneously from
separate files instead (assuming the training data is sharded across multiple CSV files)
by creating multiple readers (see Figure 12-10).
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Figure 12-10. Reading simultaneously from multiple files

For this we need to write a small function to create a reader and the nodes that will
read and push one instance to the instance queue:

def read_and_push_instance(filename_gueue, instance_gueue):
reader = tf.TextLineReader(skip_header_lines=1)
key, value = reader.read(filename_queue)
x1, x2, target = tf.decode_csv(value, record_defaults=[[-1.], [-1.], [-1]1])
features = tf.stack([x1, x2])
enqueue_instance = instance_queue.enqueue([features, target])
return enqueue_instance

Next we define the queues:

filename_queue = tf.FIFOQueue(capacity=10, dtypes=[tf.string], shapes=[()])
filename = tf.placeholder(tf.string)

enqueue_filename = filename_queue.enqueue([filename])

close_filename_queue = filename_queue.close()

instance_queue = tf.RandomShuffleQueue([...])

And finally we create the QueueRunner, but this time we give it a list of different
enqueue operations. Each operation will use a different reader, so the threads will
simultaneously read from different files:
read_and_enqueue_ops = [
read_and_push_instance(filename_gueue, instance_queue)
for 1 in range(5)]
queue_runner = tf.train.QueueRunner(instance_queue, read_and_enqueue_ops)
The execution phase is then the same as before: first push the names of the files to
read, then create a Coordinator and create and start the QueueRunner threads. This
time all threads will read from different files simultaneously until all files are read
entirely, and then the QueueRunner will close the instance queue so that other ops
pulling from it don’t get blocked.
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Other convenience functions

TensorFlow also offers a few convenience functions to simplify some common tasks
when reading training instances. We will go over just a few (see the API documenta-
tion for the full list).

The string_input_producer() takes a 1D tensor containing a list of filenames, cre-
ates a thread that pushes one filename at a time to the filename queue, and then
closes the queue. If you specify a number of epochs, it will cycle through the file-
names once per epoch before closing the queue. By default, it shuffles the filenames at
each epoch. It creates a QueueRunner to manage its thread, and adds it to the Graph
Keys.QUEUE_RUNNERS collection. To start every QueueRunner in that collection, you
can call the tf.train.start_queue_runners() function. Note that if you forget to
start the QueueRunner, the filename queue will be open and empty, and your readers
will be blocked forever.

There are a few other producer functions that similarly create a queue and a corre-
sponding QueueRunner for running an enqueue operation (e.g., input_producer(),
range_input_producer(), and slice_input_producer()).

The shuffle_batch() function takes a list of tensors (e.g., [features, target])and
creates:

« A RandomShuffleQueue

o A QueueRunner to enqueue the tensors to the queue (added to the Graph
Keys.QUEUE_RUNNERS collection)

« A dequeue_many operation to extract a mini-batch from the queue

This makes it easy to manage in a single process a multithreaded input pipeline feed-
ing a queue and a training pipeline reading mini-batches from that queue. Also check
out the batch(), batch_join(), and shuffle_batch_join() functions that provide
similar functionality.

Okay! You now have all the tools you need to start training and running neural net-
works efficiently across multiple devices and servers on a TensorFlow cluster. Lets
review what you have learned:

« Using multiple GPU devices
o Setting up and starting a TensorFlow cluster
o Distributing computations across multiple devices and servers

« Sharing variables (and other stateful ops such as queues and readers) across ses-
sions using containers

« Coordinating multiple graphs working asynchronously using queues
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 Reading inputs efficiently using readers, queue runners, and coordinators

Now let’s use all of this to parallelize neural networks!

Parallelizing Neural Networks on a TensorFlow Cluster

In this section, first we will look at how to parallelize several neural networks by sim-
ply placing each one on a different device. Then we will look at the much trickier
problem of training a single neural network across multiple devices and servers.

One Neural Network per Device

The most trivial way to train and run neural networks on a TensorFlow cluster is to
take the exact same code you would use for a single device on a single machine, and
specify the master server’s address when creating the session. That’s it—you’re done!
Your code will be running on the server’s default device. You can change the device
that will run your graph simply by putting your code’s construction phase within a
device block.

By running several client sessions in parallel (in different threads or different pro-
cesses), connecting them to different servers, and configuring them to use different
devices, you can quite easily train or run many neural networks in parallel, across all
devices and all machines in your cluster (see Figure 12-11). The speedup is almost
linear.! Training 100 neural networks across 50 servers with 2 GPUs each will not take
much longer than training just 1 neural network on 1 GPU.

Figure 12-11. Training one neural network per device

4 Not 100% linear if you wait for all devices to finish, since the total time will be the time taken by the slowest
device.
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This solution is perfect for hyperparameter tuning: each device in the cluster will
train a different model with its own set of hyperparameters. The more computing
power you have, the larger the hyperparameter space you can explore.

It also works perfectly if you host a web service that receives a large number of queries
per second (QPS) and you need your neural network to make a prediction for each
query. Simply replicate the neural network across all devices on the cluster and dis-
patch queries across all devices. By adding more servers you can handle an unlimited
number of QPS (however, this will not reduce the time it takes to process a single
request since it will still have to wait for a neural network to make a prediction).

Another option is to serve your neural networks using TensorFlow
Serving. It is an open source system, released by Google in Febru-
ary 2016, designed to serve a high volume of queries to Machine
Learning models (typically built with TensorFlow). It handles
model versioning, so you can easily deploy a new version of your
network to production, or experiment with various algorithms
without interrupting your service, and it can sustain a heavy load
by adding more servers. For more details, check out https://tensor
flow.github.io/serving/.

In-Graph Versus Between-Graph Replication

You can also parallelize the training of a large ensemble of neural networks by simply
placing every neural network on a different device (ensembles were introduced in
Chapter 7). However, once you want to run the ensemble, you will need to aggregate
the individual predictions made by each neural network to produce the ensemble’s
prediction, and this requires a bit of coordination.

There are two major approaches to handling a neural network ensemble (or any other
graph that contains large chunks of independent computations):

+ You can create one big graph, containing every neural network, each pinned to a
different device, plus the computations needed to aggregate the individual pre-
dictions from all the neural networks (see Figure 12-12). Then you just create
one session to any server in the cluster and let it take care of everything (includ-
ing waiting for all individual predictions to be available before aggregating them).
This approach is called in-graph replication.
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Figure 12-12. In-graph replication

« Alternatively, you can create one separate graph for each neural network and

handle synchronization between these graphs yourself. This approach is called
between-graph replication. One typical implementation is to coordinate the exe-
cution of these graphs using queues (see Figure 12-13). A set of clients handles
one neural network each, reading from its dedicated input queue, and writing to
its dedicated prediction queue. Another client is in charge of reading the inputs
and pushing them to all the input queues (copying all inputs to every queue).
Finally, one last client is in charge of reading one prediction from each prediction
queue and aggregating them to produce the ensemble’s prediction.

Figure 12-13. Between-graph replication
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These solutions have their pros and cons. In-graph replication is somewhat simpler to
implement since you don't have to manage multiple clients and multiple queues.
However, between-graph replication is a bit easier to organize into well-bounded and
easy-to-test modules. Moreover, it gives you more flexibility. For example, you could
add a dequeue timeout in the aggregator client so that the ensemble would not fail
even if one of the neural network clients crashes or if one neural network takes too
long to produce its prediction. TensorFlow lets you specify a timeout when calling the
run() function by passing a RunOptions with timeout_in_ms:

with tf.Session([...]) as sess:
[...]
run_options = tf.RunOptions()
run_options.timeout_in_ms = 1000 # 1s timeout
try:
pred = sess.run(dequeue_prediction, options=run_options)
except tf.errors.DeadlineExceededError as ex:
[...] # the dequeue operation timed out after 1s

Another way you can specify a timeout is to set the session’s operation_time
out_in_ms configuration option, but in this case the run() function times out if any
operation takes longer than the timeout delay:

config = tf.ConfigProto()
config.operation_timeout_in_ms = 1000 # 1s timeout for every operation

with tf.Session([...], config=config) as sess:
[...]
try:
pred = sess.run(dequeue_prediction)
except tf.errors.DeadlineExceededError as ex:
[...] # the dequeue operation timed out after 1s

Model Parallelism

So far we have run each neural network on a single device. What if we want to run a
single neural network across multiple devices? This requires chopping your model
into separate chunks and running each chunk on a different device. This is called
model parallelism. Unfortunately, model parallelism turns out to be pretty tricky, and
it really depends on the architecture of your neural network. For fully connected net-
works, there is generally not much to be gained from this approach (see
Figure 12-14). Intuitively, it may seem that an easy way to split the model is to place
each layer on a different device, but this does not work since each layer needs to wait
for the output of the previous layer before it can do anything. So perhaps you can
slice it vertically—for example, with the left half of each layer on one device, and the
right part on another device? This is slightly better, since both halves of each layer can
indeed work in parallel, but the problem is that each half of the next layer requires the
output of both halves, so there will be a lot of cross-device communication (repre-
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sented by the dashed arrows). This is likely to completely cancel out the benefit of the
parallel computation, since cross-device communication is slow (especially if it is
across separate machines).

Figure 12-14. Splitting a fully connected neural network

However, as we will see in Chapter 13, some neural network architectures, such as
convolutional neural networks, contain layers that are only partially connected to the
lower layers, so it is much easier to distribute chunks across devices in an efficient
way.

Figure 12-15. Splitting a partially connected neural network

Moreover, as we will see in Chapter 14, some deep recurrent neural networks are
composed of several layers of memory cells (see the left side of Figure 12-16). A cell’s
output at time ¢ is fed back to its input at time ¢ + 1 (as you can see more clearly on
the right side of Figure 12-16). If you split such a network horizontally, placing each
layer on a different device, then at the first step only one device will be active, at the
second step two will be active, and by the time the signal propagates to the output
layer all devices will be active simultaneously. There is still a lot of cross-device com-
munication going on, but since each cell may be fairly complex, the benefit of run-
ning multiple cells in parallel often outweighs the communication penalty.
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Figure 12-16. Splitting a deep recurrent neural network

In short, model parallelism can speed up running or training some types of neural
networks, but not all, and it requires special care and tuning, such as making sure
that devices that need to communicate the most run on the same machine.

Data Parallelism

Another way to parallelize the training of a neural network is to replicate it on each
device, run a training step simultaneously on all replicas using a different mini-batch
for each, and then aggregate the gradients to update the model parameters. This is
called data parallelism (see Figure 12-17).

Figure 12-17. Data parallelism

There are two variants of this approach: synchronous updates and asynchronous
updates.
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Synchronous updates

With synchronous updates, the aggregator waits for all gradients to be available before
computing the average and applying the result (i.e., using the aggregated gradients to
update the model parameters). Once a replica has finished computing its gradients, it
must wait for the parameters to be updated before it can proceed to the next mini-
batch. The downside is that some devices may be slower than others, so all other
devices will have to wait for them at every step. Moreover, the parameters will be
copied to every device almost at the same time (immediately after the gradients are
applied), which may saturate the parameter servers bandwidth.

To reduce the waiting time at each step, you could ignore the gradi-
ents from the slowest few replicas (typically ~10%). For example,
you could run 20 replicas, but only aggregate the gradients from
the fastest 18 replicas at each step, and just ignore the gradients
from the last 2. As soon as the parameters are updated, the first 18
replicas can start working again immediately, without having to
wait for the 2 slowest replicas. This setup is generally described as
having 18 replicas plus 2 spare replicas.®

Asynchronous updates

With asynchronous updates, whenever a replica has finished computing the gradi-
ents, it immediately uses them to update the model parameters. There is no aggrega-
tion (remove the “mean” step in Figure 12-17), and no synchronization. Replicas just
work independently of the other replicas. Since there is no waiting for the other repli-
cas, this approach runs more training steps per minute. Moreover, although the
parameters still need to be copied to every device at every step, this happens at differ-
ent times for each replica so the risk of bandwidth saturation is reduced.

Data parallelism with asynchronous updates is an attractive choice, because of its
simplicity, the absence of synchronization delay, and a better use of the bandwidth.
However, although it works reasonably well in practice, it is almost surprising that it
works at all! Indeed, by the time a replica has finished computing the gradients based
on some parameter values, these parameters will have been updated several times by
other replicas (on average N — 1 times if there are N replicas) and there is no guaran-
tee that the computed gradients will still be pointing in the right direction (see
Figure 12-18). When gradients are severely out-of-date, they are called stale gradients:
they can slow down convergence, introducing noise and wobble effects (the learning

5 This name is slightly confusing since it sounds like some replicas are special, doing nothing. In reality, all rep-
licas are equivalent: they all work hard to be among the fastest at each training step, and the losers vary at
every step (unless some devices are really slower than others).
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curve may contain temporary oscillations), or they can even make the training algo-
rithm diverge.

Figure 12-18. Stale gradients when using asynchronous updates

There are a few ways to reduce the effect of stale gradients:

 Reduce the learning rate.
« Drop stale gradients or scale them down.
o Adjust the mini-batch size.

o Start the first few epochs using just one replica (this is called the warmup phase).
Stale gradients tend to be more damaging at the beginning of training, when gra-
dients are typically large and the parameters have not settled into a valley of the
cost function yet, so different replicas may push the parameters in quite different
directions.

A paper published by the Google Brain team in April 2016 benchmarked various
approaches and found that data parallelism with synchronous updates using a few
spare replicas was the most efficient, not only converging faster but also producing a
better model. However, this is still an active area of research, so you should not rule
out asynchronous updates quite yet.

Bandwidth saturation

Whether you use synchronous or asynchronous updates, data parallelism still
requires communicating the model parameters from the parameter servers to every
replica at the beginning of every training step, and the gradients in the other direction
at the end of each training step. Unfortunately, this means that there always comes a
point where adding an extra GPU will not improve performance at all because the
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time spent moving the data in and out of GPU RAM (and possibly across the net-
work) will outweigh the speedup obtained by splitting the computation load. At that
point, adding more GPUs will just increase saturation and slow down training.

For some models, typically relatively small and trained on a very
large training set, you are often better off training the model on a
single machine with a single GPU.

Saturation is more severe for large dense models, since they have a lot of parameters
and gradients to transfer. It is less severe for small models (but the parallelization gain
is small) and also for large sparse models since the gradients are typically mostly
zeros, so they can be communicated efficiently. Jeff Dean, initiator and lead of the
Google Brain project, reported typical speedups of 25-40x when distributing compu-
tations across 50 GPUs for dense models, and 300x speedup for sparser models
trained across 500 GPUs. As you can see, sparse models really do scale better. Here
are a few concrete examples:

o Neural Machine Translation: 6x speedup on 8 GPUs
« Inception/ImageNet: 32x speedup on 50 GPUs
« RankBrain: 300x speedup on 500 GPUs

These numbers represent the state of the art in Q1 2016. Beyond a few dozen GPUs
for a dense model or few hundred GPUs for a sparse model, saturation kicks in and
performance degrades. There is plenty of research going on to solve this problem
(exploring peer-to-peer architectures rather than centralized parameter servers, using
lossy model compression, optimizing when and what the replicas need to communi-
cate, and so on), so there will likely be a lot of progress in parallelizing neural net-
works in the next few years.

In the meantime, here are a few simple steps you can take to reduce the saturation
problem:

» Group your GPUs on a few servers rather than scattering them across many
servers. This will avoid unnecessary network hops.

o Shard the parameters across multiple parameter servers (as discussed earlier).

 Drop the model parameters’ float precision from 32 bits (tf.float32) to 16 bits
(tf.bfloat16). This will cut in half the amount of data to transfer, without much
impact on the convergence rate or the model’s performance.
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Although 16-bit precision is the minimum for training neural net-
work, you can actually drop down to 8-bit precision after training
to reduce the size of the model and speed up computations. This is
called quantizing the neural network. It is particularly useful for
deploying and running pretrained models on mobile phones. See
Pete Warden’s great post on the subject.

TensorFlow implementation

To implement data parallelism using TensorFlow, you first need to choose whether
you want in-graph replication or between-graph replication, and whether you want
synchronous updates or asynchronous updates. Let’s look at how you would imple-
ment each combination (see the exercises and the Jupyter notebooks for complete
code examples).

With in-graph replication + synchronous updates, you build one big graph contain-
ing all the model replicas (placed on different devices), and a few nodes to aggregate
all their gradients and feed them to an optimizer. Your code opens a session to the
cluster and simply runs the training operation repeatedly.

With in-graph replication + asynchronous updates, you also create one big graph, but
with one optimizer per replica, and you run one thread per replica, repeatedly run-
ning the replica’s optimizer.

With between-graph replication + asynchronous updates, you run multiple inde-
pendent clients (typically in separate processes), each training the model replica as if
it were alone in the world, but the parameters are actually shared with other replicas
(using a resource container).

With between-graph replication + synchronous updates, once again you run multiple
clients, each training a model replica based on shared parameters, but this time you
wrap the optimizer (e.g., a MomentumOptimizer) within a SyncReplicasOptimizer.
Each replica uses this optimizer as it would use any other optimizer, but under the
hood this optimizer sends the gradients to a set of queues (one per variable), which is
read by one of the replica’s SyncReplicasOptimizer, called the chief. The chief aggre-
gates the gradients and applies them, then writes a token to a foken queue for each
replica, signaling it that it can go ahead and compute the next gradients. This
approach supports having spare replicas.

If you go through the exercises, you will implement each of these four solutions. You
will easily be able to apply what you have learned to train large deep neural networks
across dozens of servers and GPUs! In the following chapters we will go through a
few more important neural network architectures before we tackle Reinforcement
Learning.
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Exercises

1.

10.

If you get a CUDA_ERROR_OUT_OF_MEMORY when starting your TensorFlow pro-
gram, what is probably going on? What can you do about it?

. What is the difference between pinning an operation on a device and placing an

operation on a device?

. If you are running on a GPU-enabled TensorFlow installation, and you just use

the default placement, will all operations be placed on the first GPU?

If you pin a variable to "/gpu:0", can it be used by operations placed on /gpu:1?
Or by operations placed on "/cpu:0"? Or by operations pinned to devices loca-
ted on other servers?

. Can two operations placed on the same device run in parallel?

What is a control dependency and when would you want to use one?

Suppose you train a DNN for days on a TensorFlow cluster, and immediately
after your training program ends you realize that you forgot to save the model
using a Saver. Is your trained model lost?

. Train several DNNs in parallel on a TensorFlow cluster, using different hyper-

parameter values. This could be DNNs for MNIST classification or any other task
you are interested in. The simplest option is to write a single client program that
trains only one DNN, then run this program in multiple processes in parallel,
with different hyperparameter values for each client. The program should have
command-line options to control what server and device the DNN should be
placed on, and what resource container and hyperparameter values to use (make
sure to use a different resource container for each DNN). Use a validation set or
cross-validation to select the top three models.

. Create an ensemble using the top three models from the previous exercise.

Define it in a single graph, ensuring that each DNN runs on a different device.
Evaluate it on the validation set: does the ensemble perform better than the indi-
vidual DNNs?

Train a DNN using between-graph replication and data parallelism with asyn-
chronous updates, timing how long it takes to reach a satistying performance.
Next, try again using synchronous updates. Do synchronous updates produce a
better model? Is training faster? Split the DNN vertically and place each vertical
slice on a different device, and train the model again. Is training any faster? Is the
performance any different?

Solutions to these exercises are available in Appendix A.
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CHAPTER 13
Convolutional Neural Networks

Although IBM’s Deep Blue supercomputer beat the chess world champion Garry Kas-
parov back in 1996, until quite recently computers were unable to reliably perform
seemingly trivial tasks such as detecting a puppy in a picture or recognizing spoken
words. Why are these tasks so effortless to us humans? The answer lies in the fact that
perception largely takes place outside the realm of our consciousness, within special-
ized visual, auditory, and other sensory modules in our brains. By the time sensory
information reaches our consciousness, it is already adorned with high-level features;
for example, when you look at a picture of a cute puppy, you cannot choose not to see
the puppy, or not to notice its cuteness. Nor can you explain how you recognize a cute
puppy; it’s just obvious to you. Thus, we cannot trust our subjective experience: per-
ception is not trivial at all, and to understand it we must look at how the sensory
modules work.

Convolutional neural networks (CNNs) emerged from the study of the brain’s visual
cortex, and they have been used in image recognition since the 1980s. In the last few
years, thanks to the increase in computational power, the amount of available training
data, and the tricks presented in Chapter 11 for training deep nets, CNNs have man-
aged to achieve superhuman performance on some complex visual tasks. They power
image search services, self-driving cars, automatic video classification systems, and
more. Moreover, CNNs are not restricted to visual perception: they are also successful
at other tasks, such as voice recognition or natural language processing (NLP); however,
we will focus on visual applications for now.

In this chapter we will present where CNNs came from, what their building blocks
look like, and how to implement them using TensorFlow. Then we will present some
of the best CNN architectures.
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The Architecture of the Visual Cortex

David H. Hubel and Torsten Wiesel performed a series of experiments on cats in
1958" and 1959* (and a few years later on monkeys?), giving crucial insights on the
structure of the visual cortex (the authors received the Nobel Prize in Physiology or
Medicine in 1981 for their work). In particular, they showed that many neurons in
the visual cortex have a small local receptive field, meaning they react only to visual
stimuli located in a limited region of the visual field (see Figure 13-1, in which the
local receptive fields of five neurons are represented by dashed circles). The receptive
fields of different neurons may overlap, and together they tile the whole visual field.
Moreover, the authors showed that some neurons react only to images of horizontal
lines, while others react only to lines with different orientations (two neurons may
have the same receptive field but react to different line orientations). They also
noticed that some neurons have larger receptive fields, and they react to more com-
plex patterns that are combinations of the lower-level patterns. These observations
led to the idea that the higher-level neurons are based on the outputs of neighboring
lower-level neurons (in Figure 13-1, notice that each neuron is connected only to a
few neurons from the previous layer). This powerful architecture is able to detect all
sorts of complex patterns in any area of the visual field.

Figure 13-1. Local receptive fields in the visual cortex

These studies of the visual cortex inspired the neocognitron, introduced in 1980,
which gradually evolved into what we now call convolutional neural networks. An
important milestone was a 1998 paper® by Yann LeCun, Léon Bottou, Yoshua Bengio,

1 “Single Unit Activity in Striate Cortex of Unrestrained Cats,” D. Hubel and T. Wiesel (1958).
2 “Receptive Fields of Single Neurones in the Cat’s Striate Cortex,” D. Hubel and T. Wiesel (1959).
3 “Receptive Fields and Functional Architecture of Monkey Striate Cortex;” D. Hubel and T. Wiesel (1968).

4 “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected
by Shift in Position,” K. Fukushima (1980).

5 “Gradient-Based Learning Applied to Document Recognition,” Y. LeCun et al. (1998).
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and Patrick Haffner, which introduced the famous LeNet-5 architecture, widely used
to recognize handwritten check numbers. This architecture has some building blocks
that you already know, such as fully connected layers and sigmoid activation func-
tions, but it also introduces two new building blocks: convolutional layers and pooling
layers. Let’s look at them now.

Why not simply use a regular deep neural network with fully con-
nected layers for image recognition tasks? Unfortunately, although
this works fine for small images (e.g., MNIST), it breaks down for
larger images because of the huge number of parameters it
requires. For example, a 100 x 100 image has 10,000 pixels, and if
the first layer has just 1,000 neurons (which already severely
restricts the amount of information transmitted to the next layer),
this means a total of 10 million connections. And that’s just the first
layer. CNNs solve this problem using partially connected layers.

Convolutional Layer

The most important building block of a CNN is the convolutional layer:® neurons in
the first convolutional layer are not connected to every single pixel in the input image
(like they were in previous chapters), but only to pixels in their receptive fields (see
Figure 13-2). In turn, each neuron in the second convolutional layer is connected
only to neurons located within a small rectangle in the first layer. This architecture
allows the network to concentrate on low-level features in the first hidden layer, then
assemble them into higher-level features in the next hidden layer, and so on. This
hierarchical structure is common in real-world images, which is one of the reasons
why CNNs work so well for image recognition.

6 A convolution is a mathematical operation that slides one function over another and measures the integral of
their pointwise multiplication. It has deep connections with the Fourier transform and the Laplace transform,
and is heavily used in signal processing. Convolutional layers actually use cross-correlations, which are very
similar to convolutions (see http://goo.gl/HAfxXd for more details).
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Figure 13-2. CNN layers with rectangular local receptive fields

Until now, all multilayer neural networks we looked at had layers
composed of a long line of neurons, and we had to flatten input
images to 1D before feeding them to the neural network. Now each
layer is represented in 2D, which makes it easier to match neurons
with their corresponding inputs.

A neuron located in row 7, column j of a given layer is connected to the outputs of the
neurons in the previous layer located in rows i to i + f, — 1, columns jtoj + f, - 1,
where f, and f,, are the height and width of the receptive field (see Figure 13-3). In
order for a layer to have the same height and width as the previous layer, it is com-
mon to add zeros around the inputs, as shown in the diagram. This is called zero pad-
ding.

[ [/ [/ [ [ [/
[ [/ [/ [/ [ [/ 7

f=
1 L
f=3 Zero padding
w

Figure 13-3. Connections between layers and zero padding
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It is also possible to connect a large input layer to a much smaller layer by spacing out
the receptive fields, as shown in Figure 13-4. The distance between two consecutive
receptive fields is called the stride. In the diagram, a 5 x 7 input layer (plus zero pad-
ding) is connected to a 3 x 4 layer, using 3 x 3 receptive fields and a stride of 2 (in this
example the stride is the same in both directions, but it does not have to be so0). A
neuron located in row i, column j in the upper layer is connected to the outputs of the
neurons in the previous layer located in rows i x s, to i X s, + f, — 1, columns j x s,, +
f»— 1, where s, and s,, are the vertical and horizontal strides.

Figure 13-4. Reducing dimensionality using a stride

Filters

A neuron’s weights can be represented as a small image the size of the receptive field.
For example, Figure 13-5 shows two possible sets of weights, called filters (or convolu-
tion kernels). The first one is represented as a black square with a vertical white line in
the middle (it is a 7 x 7 matrix full of Os except for the central column, which is full of
1s); neurons using these weights will ignore everything in their receptive field except
for the central vertical line (since all inputs will get multiplied by 0, except for the
ones located in the central vertical line). The second filter is a black square with a
horizontal white line in the middle. Once again, neurons using these weights will
ignore everything in their receptive field except for the central horizontal line.

Now if all neurons in a layer use the same vertical line filter (and the same bias term),
and you feed the network the input image shown in Figure 13-5 (bottom image), the
layer will output the top-left image. Notice that the vertical white lines get enhanced
while the rest gets blurred. Similarly, the upper-right image is what you get if all neu-
rons use the horizontal line filter; notice that the horizontal white lines get enhanced
while the rest is blurred out. Thus, a layer full of neurons using the same filter gives
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you a feature map, which highlights the areas in an image that are most similar to the
filter. During training, a CNN finds the most useful filters for its task, and it learns to
combine them into more complex patterns (e.g., a cross is an area in an image where
both the vertical filter and the horizontal filter are active).

Figure 13-5. Applying two different filters to get two feature maps

Stacking Multiple Feature Maps

Up to now, for simplicity, we have represented each convolutional layer as a thin 2D
layer, but in reality it is composed of several feature maps of equal sizes, so it is more
accurately represented in 3D (see Figure 13-6). Within one feature map, all neurons
share the same parameters (weights and bias term), but different feature maps may
have different parameters. A neuron’s receptive field is the same as described earlier,
but it extends across all the previous layers’ feature maps. In short, a convolutional
layer simultaneously applies multiple filters to its inputs, making it capable of detect-
ing multiple features anywhere in its inputs.

The fact that all neurons in a feature map share the same parame-
ters dramatically reduces the number of parameters in the model,
but most importantly it means that once the CNN has learned to
recognize a pattern in one location, it can recognize it in any other
location. In contrast, once a regular DNN has learned to recognize
a pattern in one location, it can recognize it only in that particular
location.
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Moreover, input images are also composed of multiple sublayers: one per color chan-
nel. There are typically three: red, green, and blue (RGB). Grayscale images have just
one channel, but some images may have much more—for example, satellite images
that capture extra light frequencies (such as infrared).

Figure 13-6. Convolution layers with multiple feature maps, and images with three
channels

Specifically, a neuron located in row i, column j of the feature map k in a given convo-
lutional layer [ is connected to the outputs of the neurons in the previous layer I - 1,
located in rows i x s, to i x s, + f,, — 1 and columns j x s, to j x s, + f, — 1, across all
feature maps (in layer I — 1). Note that all neurons located in the same row i and col-
umn j but in different feature maps are connected to the outputs of the exact same
neurons in the previous layer.

Equation 13-1 summarizes the preceding explanations in one big mathematical equa-
tion: it shows how to compute the output of a given neuron in a convolutional layer.
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It is a bit ugly due to all the different indices, but all it does is calculate the weighted
sum of all the inputs, plus the bias term.

Equation 13-1. Computing the output of a neuron in a convolutional layer

fh S fn’ i,=u.sh+fh—1

z . =b o+ Y XY X, W with
bk T Tk T S B W2 TR T Kk jJ=v.s,+f,-1

s z;; is the output of the neuron located in row i, column j in feature map k of the
convolutional layer (layer I).

o As explained earlier, s, and s,, are the vertical and horizontal strides, f, and f,, are
the height and width of the receptive field, and f,, is the number of feature maps
in the previous layer (layer / - 1).

* Xy ;v is the output of the neuron located in layer I - 1, row #/, column /, feature
map k’ (or channel K’ if the previous layer is the input layer).

o b, is the bias term for feature map k (in layer I). You can think of it as a knob that
tweaks the overall brightness of the feature map k.

o W, ¢« is the connection weight between any neuron in feature map k of the layer
l'and its input located at row u, column v (relative to the neuron’s receptive field),
and feature map k.

TensorFlow Implementation

In TensorFlow, each input image is typically represented as a 3D tensor of shape
[height, width, channels]. A mini-batch is represented as a 4D tensor of shape
[mini-batch size, height, width, channels]. The weights of a convolutional
layer are represented as a 4D tensor of shape [f;, f,» f,» f]. The bias terms of a convo-
lutional layer are simply represented as a 1D tensor of shape [f,].

Lets look at a simple example. The following code loads two sample images, using
Scikit-Learn’s load_sample_images() (which loads two color images, one of a Chi-
nese temple, and the other of a flower). Then it creates two 7 x 7 filters (one with a
vertical white line in the middle, and the other with a horizontal white line), and
applies them to both images using a convolutional layer built using TensorFlow’s
conv2d() function (with zero padding and a stride of 2). Finally, it plots one of the
resulting feature maps (similar to the top-right image in Figure 13-5).
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import as
from import load_sample_images

# Load sample images
dataset = np.array(load_sample_images().images, dtype=np.float32)
batch_size, height, width, channels = dataset.shape

# Create 2 filters

filters_test = np.zeros(shape=(7, 7, channels, 2), dtype=np.float32)
filters_test[:, 3, :, 0] = 1 # vertical line

filters_test[3, :, :, 1] = 1 # horizontal line

# Create a graph with input X plus a convolutional layer applying the 2 filters
X = tf.placeholder(tf.float32, shape=(None, height, width, channels))
convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], padding="SAME")

with tf.Session() as sess:
output = sess.run(convolution, feed_dict={X: dataset})

plt.imshow(output[0, :, :, 1]) # plot 1st image's 2nd feature map
plt.show()

Most of this code is self-explanatory, but the conv2d() line deserves a bit of explana-
tion:

« Xis the input mini-batch (a 4D tensor, as explained earlier).
o filters is the set of filters to apply (also a 4D tensor, as explained earlier).

o strides is a four-element 1D array, where the two central elements are the verti-
cal and horizontal strides (s, and s,). The first and last elements must currently
be equal to 1. They may one day be used to specify a batch stride (to skip some
instances) and a channel stride (to skip some of the previous layer’s feature maps
or channels).

« padding must be either "VALID" or "SAME":

— If set to "VALID", the convolutional layer does not use zero padding, and may
ignore some rows and columns at the bottom and right of the input image,
depending on the stride, as shown in Figure 13-7 (for simplicity, only the hor-
izontal dimension is shown here, but of course the same logic applies to the
vertical dimension).

— If set to "SAME", the convolutional layer uses zero padding if necessary. In this
case, the number of output neurons is equal to the number of input neurons
divided by the stride, rounded up (in this example, ceil (13 / 5) = 3). Then
zeros are added as evenly as possible around the inputs.
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padding="VALID"
(i.e., without padding)

/ \ | Ignored
|

padding="SAME"
(i.e., with zero padding)

s

Figure 13-7. Padding options—input width: 13, filter width: 6, stride: 5

Unfortunately, convolutional layers have quite a few hyperparameters: you must
choose the number of filters, their height and width, the strides, and the padding
type. As always, you can use cross-validation to find the right hyperparameter values,
but this is very time-consuming. We will discuss common CNN architectures later, to
give you some idea of what hyperparameter values work best in practice.

Memory Requirements

Another problem with CNNs is that the convolutional layers require a huge amount
of RAM, especially during training, because the reverse pass of backpropagation
requires all the intermediate values computed during the forward pass.

For example, consider a convolutional layer with 5 x 5 filters, outputting 200 feature
maps of size 150 x 100, with stride 1 and SAME padding. If the input is a 150 x 100
RGB image (three channels), then the number of parameters is (5 x 5 x 3 + 1) x 200
= 15,200 (the +1 corresponds to the bias terms), which is fairly small compared to a
fully connected layer.” However, each of the 200 feature maps contains 150 x 100 neu-
rons, and each of these neurons needs to compute a weighted sum of its 5 x 5 x 3 =
75 inputs: that’s a total of 225 million float multiplications. Not as bad as a fully con-

7 A fully connected layer with 150 x 100 neurons, each connected to all 150 x 100 x 3 inputs, would have 1502
x 100% x 3 = 675 million parameters!
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nected layer, but still quite computationally intensive. Moreover, if the feature maps
are represented using 32-bit floats, then the convolutional layer’s output will occupy
200 x 150 x 100 x 32 = 96 million bits (about 11.4 MB) of RAM.® And that’s just for
one instance! If a training batch contains 100 instances, then this layer will use up
over 1 GB of RAM!

During inference (i.e., when making a prediction for a new instance) the RAM occu-
pied by one layer can be released as soon as the next layer has been computed, so you
only need as much RAM as required by two consecutive layers. But during training
everything computed during the forward pass needs to be preserved for the reverse
pass, so the amount of RAM needed is (at least) the total amount of RAM required by
all layers.

If training crashes because of an out-of-memory error, you can try
reducing the mini-batch size. Alternatively, you can try reducing
dimensionality using a stride, or removing a few layers. Or you can
try using 16-bit floats instead of 32-bit floats. Or you could distrib-
ute the CNN across multiple devices.

Now let’s look at the second common building block of CNNs: the pooling layer.

Pooling Layer

Once you understand how convolutional layers work, the pooling layers are quite
easy to grasp. Their goal is to subsample (i.e., shrink) the input image in order to
reduce the computational load, the memory usage, and the number of parameters
(thereby limiting the risk of overfitting). Reducing the input image size also makes
the neural network tolerate a little bit of image shift (location invariance).

Just like in convolutional layers, each neuron in a pooling layer is connected to the
outputs of a limited number of neurons in the previous layer, located within a small
rectangular receptive field. You must define its size, the stride, and the padding type,
just like before. However, a pooling neuron has no weights; all it does is aggregate the
inputs using an aggregation function such as the max or mean. Figure 13-8 shows a
max pooling layer, which is the most common type of pooling layer. In this example,
we use a 2 x 2 pooling kernel, a stride of 2, and no padding. Note that only the max
input value in each kernel makes it to the next layer. The other inputs are dropped.

8 1 MB = 1,024 kB = 1,024 x 1,024 bytes = 1,024 x 1,024 x 8 bits.
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Figure 13-8. Max pooling layer (2 x 2 pooling kernel, stride 2, no padding)

This is obviously a very destructive kind of layer: even with a tiny 2 x 2 kernel and a
stride of 2, the output will be two times smaller in both directions (so its area will be
four times smaller), simply dropping 75% of the input values.

A pooling layer typically works on every input channel independently, so the output
depth is the same as the input depth. You may alternatively pool over the depth
dimension, as we will see next, in which case the image’s spatial dimensions (height
and width) remain unchanged, but the number of channels is reduced.

Implementing a max pooling layer in TensorFlow is quite easy. The following code
creates a max pooling layer using a 2 x 2 kernel, stride 2, and no padding, then
applies it to all the images in the dataset:

[...] # load the image dataset, just like above

# Create a graph with input X plus a max pooling layer
X = tf.placeholder(tf.float32, shape=(None, height, width, channels))
max_pool = tf.nn.max_pool(X, ksize=[1,2,2,1], strides=[1,2,2,1],padding="VALID")

with tf.Session() as sess:
output = sess.run(max_pool, feed_dict={X: dataset})

plt.imshow(output[0].astype(np.uint8)) # plot the output for the 1st image

plt.show()
The ksize argument contains the kernel shape along all four dimensions of the input
tensor: [batch size, height, width, channels]. TensorFlow currently does not
support pooling over multiple instances, so the first element of ksize must be equal
to 1. Moreover, it does not support pooling over both the spatial dimensions (height
and width) and the depth dimension, so either ksize[1] and ksize[2] must both be
equal to 1, or ksize[3] must be equal to 1.

To create an average pooling layer, just use the avg_pool() function instead of
max_pool().
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Now you know all the building blocks to create a convolutional neural network. Let’s
see how to assemble them.

CNN Architectures

Typical CNN architectures stack a few convolutional layers (each one generally fol-
lowed by a ReLU layer), then a pooling layer, then another few convolutional layers
(+ReLU), then another pooling layer, and so on. The image gets smaller and smaller
as it progresses through the network, but it also typically gets deeper and deeper (i.e.,
with more feature maps) thanks to the convolutional layers (see Figure 13-9). At the
top of the stack, a regular feedforward neural network is added, composed of a few
fully connected layers (+ReLUs), and the final layer outputs the prediction (e.g., a
softmax layer that outputs estimated class probabilities).

Figure 13-9. Typical CNN architecture

A common mistake is to use convolution kernels that are too large.
You can often get the same effect as a 9 x 9 kernel by stacking two 3
x 3 kernels on top of each other, for a lot less compute.

Over the years, variants of this fundamental architecture have been developed, lead-
ing to amazing advances in the field. A good measure of this progress is the error rate
in competitions such as the ILSVRC ImageNet challenge. In this competition the
top-5 error rate for image classification fell from over 26% to barely over 3% in just
five years. The top-five error rate is the number of test images for which the system’s
top 5 predictions did not include the correct answer. The images are large (256 pixels
high) and there are 1,000 classes, some of which are really subtle (try distinguishing
120 dog breeds). Looking at the evolution of the winning entries is a good way to
understand how CNNs work.

We will first look at the classical LeNet-5 architecture (1998), then three of the win-
ners of the ILSVRC challenge: AlexNet (2012), GoogLeNet (2014), and ResNet
(2015).

(NN Architectures | 365


http://image-net.org/

Other Visual Tasks

There was stunning progress as well in other visual tasks such as object detection and
localization, and image segmentation. In object detection and localization, the neural
network typically outputs a sequence of bounding boxes around various objects in
the image. For example, see Maxine Oquab et al’s 2015 paper that outputs a heat map
for each object class, or Russell Stewart et al’s 2015 paper that uses a combination of a
CNN to detect faces and a recurrent neural network to output a sequence of bound-
ing boxes around them. In image segmentation, the net outputs an image (usually of
the same size as the input) where each pixel indicates the class of the object to which
the corresponding input pixel belongs. For example, check out Evan Shelhamer et al’s
2016 paper.

LeNet-5

The LeNet-5 architecture is perhaps the most widely known CNN architecture. As
mentioned earlier, it was created by Yann LeCun in 1998 and widely used for hand-
written digit recognition (MNIST). It is composed of the layers shown in Table 13-1.

Table 13-1. LeNet-5 architecture

Layer Type Maps Size Kernel size Stride Activation
Out  Fully Connected - 10 - - RBF

Fé Fully Connected - 84 - - tanh

(&) Convolution 120 1x1  5x%5 1 tanh

S4 Avg Pooling 16 5x5  2x2 2 tanh

a Convolution 16 10x10 5%5 1 tanh

Y Avg Pooling 6 14x14 2x2 2 tanh

a Convolution 6 28x28 5x%5 1 tanh

In Input 1 32%x32 - - -

There are a few extra details to be noted:

o MNIST images are 28 x 28 pixels, but they are zero-padded to 32 x 32 pixels and
normalized before being fed to the network. The rest of the network does not use
any padding, which is why the size keeps shrinking as the image progresses
through the network.

o The average pooling layers are slightly more complex than usual: each neuron
computes the mean of its inputs, then multiplies the result by a learnable coeffi-
cient (one per map) and adds a learnable bias term (again, one per map), then
finally applies the activation function.
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« Most neurons in C3 maps are connected to neurons in only three or four S2
maps (instead of all six S2 maps). See table 1 in the original paper for details.

o The output layer is a bit special: instead of computing the dot product of the
inputs and the weight vector, each neuron outputs the square of the Euclidian
distance between its input vector and its weight vector. Each output measures
how much the image belongs to a particular digit class. The cross entropy cost
function is now preferred, as it penalizes bad predictions much more, producing
larger gradients and thus converging faster.

Yann LeCun’s website (“LENET” section) features great demos of LeNet-5 classifying
digits.

AlexNet

The AlexNet CNN architecture’ won the 2012 ImageNet ILSVRC challenge by a large
margin: it achieved 17% top-5 error rate while the second best achieved only 26%! It
was developed by Alex Krizhevsky (hence the name), Ilya Sutskever, and Geoffrey
Hinton. It is quite similar to LeNet-5, only much larger and deeper, and it was the
first to stack convolutional layers directly on top of each other, instead of stacking a
pooling layer on top of each convolutional layer. Table 13-2 presents this architecture.

Table 13-2. AlexNet architecture

Layer Type Maps  Size Kernel size Stride Padding Activation
Out  Fully Connected — 1,000 - - - Softmax
F9 Fully Connected — 4,096 - - - ReLU

F8 Fully Connected - 4,096 - - - ReLU
(@) Convolution 256 1Bx13  3x3 1 SAME ReLU
@6 Convolution 384 1Bx13  3x3 1 SAME ReLU
(&} Convolution 384 1Bx13  3x3 1 SAME ReLU
S4 Max Pooling 256 1Bx13  3x3 2 VALD -

(€] Convolution 256 27x21  5x%5 1 SAME ReLU

S2 Max Pooling 9% 27x21  3X%3 2 VALD -

Q Convolution 9% 5555 1M x1 4 SAME ReLU

In Input 3(RGB) 224x 224 - - - -

To reduce overfitting, the authors used two regularization techniques we discussed in
previous chapters: first they applied dropout (with a 50% dropout rate) during train-
ing to the outputs of layers F8 and F9. Second, they performed data augmentation by

9 “ImageNet Classification with Deep Convolutional Neural Networks,” A. Krizhevsky et al. (2012).
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randomly shifting the training images by various offsets, flipping them horizontally,
and changing the lighting conditions.

AlexNet also uses a competitive normalization step immediately after the ReLU step
of layers C1 and C3, called local response normalization. This form of normalization
makes the neurons that most strongly activate inhibit neurons at the same location
but in neighboring feature maps (such competitive activation has been observed in
biological neurons). This encourages different feature maps to specialize, pushing
them apart and forcing them to explore a wider range of features, ultimately improv-
ing generalization. Equation 13-2 shows how to apply LRN.

Equation 13-2. Local response normalization

. _ . (.7
Ihigh p Jhigh = min (’ + 5 fum 1)
bj=ajk+a f a with
=7 . .
7= Now Jlow = max (0, i— 5)

o b, is the normalized output of the neuron located in feature map i, at some row u
and column v (note that in this equation we consider only neurons located at this
row and column, so u and v are not shown).

o a;is the activation of that neuron after the ReLU step, but before normalization.

o k, a, B, and r are hyperparameters. k is called the bias, and r is called the depth
radius.

o f,is the number of feature maps.

For example, if r = 2 and a neuron has a strong activation, it will inhibit the activation
of the neurons located in the feature maps immediately above and below its own.

In AlexNet, the hyperparameters are set as follows: r = 2, « = 0.00002, 3 = 0.75, and k
= 1. This step can be implemented using TensorFlow’s local_response_normaliza
tion() operation.

A variant of AlexNet called ZF Net was developed by Matthew Zeiler and Rob Fergus
and won the 2013 ILSVRC challenge. It is essentially AlexNet with a few tweaked
hyperparameters (number of feature maps, kernel size, stride, etc.).

GoogleNet

The GoogLeNet architecture was developed by Christian Szegedy et al. from Google
Research,' and it won the ILSVRC 2014 challenge by pushing the top-5 error rate

10 “Going Deeper with Convolutions,” C. Szegedy et al. (2015).
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below 7%. This great performance came in large part from the fact that the network
was much deeper than previous CNNs (see Figure 13-11). This was made possible by
sub-networks called inception modules," which allow GoogLeNet to use parameters
much more efficiently than previous architectures: GoogLeNet actually has 10 times
fewer parameters than AlexNet (roughly 6 million instead of 60 million).

Figure 13-10 shows the architecture of an inception module. The notation “3 x 3 +
2(S)” means that the layer uses a 3 x 3 kernel, stride 2, and SAME padding. The input
signal is first copied and fed to four different layers. All convolutional layers use the
ReLU activation function. Note that the second set of convolutional layers uses differ-
ent kernel sizes (1 x 1, 3 x 3, and 5 x 5), allowing them to capture patterns at different
scales. Also note that every single layer uses a stride of 1 and SAME padding (even
the max pooling layer), so their outputs all have the same height and width as their
inputs. This makes it possible to concatenate all the outputs along the depth dimen-
sion in the final depth concat layer (i.e., stack the feature maps from all four top con-
volutional layers). This concatenation layer can be implemented in TensorFlow using
the concat() operation, with axis=3 (axis 3 is the depth).

Figure 13-10. Inception module

You may wonder why inception modules have convolutional layers with 1 x 1 ker-
nels. Surely these layers cannot capture any features since they look at only one pixel
at a time? In fact, these layers serve two purposes:

o First, they are configured to output many fewer feature maps than their inputs, so
they serve as bottleneck layers, meaning they reduce dimensionality. This is par-

11 In the 2010 movie Inception, the characters keep going deeper and deeper into multiple layers of dreams,
hence the name of these modules.
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ticularly useful before the 3 x 3 and 5 x 5 convolutions, since these are very com-
putationally expensive layers.

o Second, each pair of convolutional layers ([1 x 1, 3 x 3] and [1 x 1, 5 x 5]) acts
like a single, powerful convolutional layer, capable of capturing more complex
patterns. Indeed, instead of sweeping a simple linear classifier across the image
(as a single convolutional layer does), this pair of convolutional layers sweeps a
two-layer neural network across the image.

In short, you can think of the whole inception module as a convolutional layer on
steroids, able to output feature maps that capture complex patterns at various scales.

The number of convolutional kernels for each convolutional layer
is a hyperparameter. Unfortunately, this means that you have six
more hyperparameters to tweak for every inception layer you add.

Now let’s look at the architecture of the GoogLeNet CNN (see Figure 13-11). It is so
deep that we had to represent it in three columns, but GoogLeNet is actually one tall
stack, including nine inception modules (the boxes with the spinning tops) that
actually contain three layers each. The number of feature maps output by each convo-
lutional layer and each pooling layer is shown before the kernel size. The six numbers
in the inception modules represent the number of feature maps output by each con-
volutional layer in the module (in the same order as in Figure 13-10). Note that all the
convolutional layers use the ReLU activation function.
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192, 3x3 + 2(S) b 144 32 1000 units
Local Response 128 256 64 64 Dropout

Norm 128 24 40%
Convolution 160 224 64 64 Avg Pool
192, 3x3 + 1(S) B 112 24 1024, 7x7 + 1(V)
Convolution 192 208 48 64 384 384 128 128
64, 1x1 + 1(S) <t 96 16 b 192 48
Local Response Max Pool 256 320 128 128
Norm 480, 3x3 + 2(S) 160 32
Max Pool 128 192 96 64 Max Pool
64, 3x3 + 2(S) b 128 32 832, 3x3 + 2(S)
Convolution 64 128 32 32 256 320 128 128
64, 7x7 + 2(S) <> 96 16 160 32
Input | I
f b = inception module

Figure 13-11. GoogLeNet architecture

Let’s go through this network:

The first two layers divide the image’s height and width by 4 (so its area is divided
by 16), to reduce the computational load.

Then the local response normalization layer ensures that the previous layers learn
a wide variety of features (as discussed earlier).

Two convolutional layers follow, where the first acts like a bottleneck layer. As
explained earlier, you can think of this pair as a single smarter convolutional
layer.

Again, a local response normalization layer ensures that the previous layers cap-
ture a wide variety of patterns.

Next a max pooling layer reduces the image height and width by 2, again to speed
up computations.
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o Then comes the tall stack of nine inception modules, interleaved with a couple
max pooling layers to reduce dimensionality and speed up the net.

o Next, the average pooling layer uses a kernel the size of the feature maps with
VALID padding, outputting 1 x 1 feature maps: this surprising strategy is called
global average pooling. 1t effectively forces the previous layers to produce feature
maps that are actually confidence maps for each target class (since other kinds of
features would be destroyed by the averaging step). This makes it unnecessary to
have several fully connected layers at the top of the CNN (like in AlexNet), con-
siderably reducing the number of parameters in the network and limiting the risk
of overfitting.

o The last layers are self-explanatory: dropout for regularization, then a fully con-
nected layer with a softmax activation function to output estimated class proba-
bilities.

This diagram is slightly simplified: the original GoogLeNet architecture also included
two auxiliary classifiers plugged on top of the third and sixth inception modules.
They were both composed of one average pooling layer, one convolutional layer, two
fully connected layers, and a softmax activation layer. During training, their loss
(scaled down by 70%) was added to the overall loss. The goal was to fight the vanish-
ing gradients problem and regularize the network. However, it was shown that their
effect was relatively minor.

ResNet

Last but not least, the winner of the ILSVRC 2015 challenge was the Residual Network
(or ResNet), developed by Kaiming He et al.,’* which delivered an astounding top-5
error rate under 3.6%, using an extremely deep CNN composed of 152 layers. The
key to being able to train such a deep network is to use skip connections (also called
shortcut connections): the signal feeding into a layer is also added to the output of a
layer located a bit higher up the stack. Let’s see why this is useful.

When training a neural network, the goal is to make it model a target function h(x).
If you add the input x to the output of the network (i.e., you add a skip connection),
then the network will be forced to model f(x) = h(x) - x rather than h(x). This is
called residual learning (see Figure 13-12).

12 “Deep Residual Learning for Image Recognition,” K. He (2015).
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Figure 13-12. Residual learning

When you initialize a regular neural network, its weights are close to zero, so the net-
work just outputs values close to zero. If you add a skip connection, the resulting net-
work just outputs a copy of its inputs; in other words, it initially models the identity
function. If the target function is fairly close to the identity function (which is often
the case), this will speed up training considerably.

Moreover, if you add many skip connections, the network can start making progress
even if several layers have not started learning yet (see Figure 13-13). Thanks to skip
connections, the signal can easily make its way across the whole network. The deep
residual network can be seen as a stack of residual units, where each residual unit is a
small neural network with a skip connection.

Figure 13-13. Regular deep neural network (left) and deep residual network (right)
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Now let’s look at ResNet’s architecture (see Figure 13-14). It is actually surprisingly
simple. It starts and ends exactly like GoogLeNet (except without a dropout layer),
and in between is just a very deep stack of simple residual units. Each residual unit is
composed of two convolutional layers, with Batch Normalization (BN) and ReLU
activation, using 3 x 3 kernels and preserving spatial dimensions (stride 1, SAME
padding).

Figure 13-14. ResNet architecture

Note that the number of feature maps is doubled every few residual units, at the same
time as their height and width are halved (using a convolutional layer with stride 2).
When this happens the inputs cannot be added directly to the outputs of the residual
unit since they don’t have the same shape (for example, this problem affects the skip
connection represented by the dashed arrow in Figure 13-14). To solve this problem,
the inputs are passed through a 1 x 1 convolutional layer with stride 2 and the right
number of output feature maps (see Figure 13-15).

Figure 13-15. Skip connection when changing feature map size and depth
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ResNet-34 is the ResNet with 34 layers (only counting the convolutional layers and
the fully connected layer) containing three residual units that output 64 feature maps,
4 RUs with 128 maps, 6 RUs with 256 maps, and 3 RUs with 512 maps.

ResNets deeper than that, such as ResNet-152, use slightly different residual units.
Instead of two 3 x 3 convolutional layers with (say) 256 feature maps, they use three
convolutional layers: first a 1 x 1 convolutional layer with just 64 feature maps (4
times less), which acts a a bottleneck layer (as discussed already), then a 3 x 3 layer
with 64 feature maps, and finally another 1 x 1 convolutional layer with 256 feature
maps (4 times 64) that restores the original depth. ResNet-152 contains three such
RUs that output 256 maps, then 8 RUs with 512 maps, a whopping 36 RUs with 1,024
maps, and finally 3 RUs with 2,048 maps.

As you can see, the field is moving rapidly, with all sorts of architectures popping out
every year. One clear trend is that CNNs keep getting deeper and deeper. They are
also getting lighter, requiring fewer and fewer parameters. At present, the ResNet
architecture is both the most powerful and arguably the simplest, so it is really the
one you should probably use for now, but keep looking at the ILSVRC challenge
every year. The 2016 winners were the Trimps-Soushen team from China with an
astounding 2.99% error rate. To achieve this they trained combinations of the previ-
ous models and joined them into an ensemble. Depending on the task, the reduced
error rate may or may not be worth the extra complexity.

There are a few other architectures that you may want to look at, in particular
VGGNet"” (runner-up of the ILSVRC 2014 challenge) and Inception-v4'* (which
merges the ideas of GoogLeNet and ResNet and achieves close to 3% top-5 error rate
on ImageNet classification).

There is really nothing special about implementing the various
CNN architectures we just discussed. We saw earlier how to build
all the individual building blocks, so now all you need is to assem-
ble them to create the desired architecture. We will build ResNet-34
in the upcoming exercises and you will find full working code in
the Jupyter notebooks.

13 “Very Deep Convolutional Networks for Large-Scale Image Recognition,” K. Simonyan and A. Zisserman
(2015).

14 “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” C. Szegedy et al.
(2016).
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TensorFlow Convolution Operations

TensorFlow also offers a few other kinds of convolutional layers:

 convld() creates a convolutional layer for 1D inputs. This is useful, for example,
in natural language processing, where a sentence may be represented as a 1D
array of words, and the receptive field covers a few neighboring words.

o conv3d() creates a convolutional layer for 3D inputs, such as 3D PET scan.

o atrous_conv2d() creates an atrous convolutional layer (“a trous” is French for
“with holes”). This is equivalent to using a regular convolutional layer with a fil-
ter dilated by inserting rows and columns of zeros (i.e., holes). For example, a 1 x
3 filter equal to [[1,2,3]] may be dilated with a dilation rate of 4, resulting in a
dilated filter [[1, 0, 0, 0, 2, 0, 0, 0, 3]]. This allows the convolutional
layer to have a larger receptive field at no computational price and using no extra
parameters.

 conv2d_transpose() creates a transpose convolutional layer, sometimes called a
deconvolutional layer,”> which upsamples an image. It does so by inserting zeros
between the inputs, so you can think of this as a regular convolutional layer using
a fractional stride. Upsampling is useful, for example, in image segmentation: in a
typical CNN, feature maps get smaller and smaller as you progress through the
network, so if you want to output an image of the same size as the input, you
need an upsampling layer.

o depthwise_conv2d() creates a depthwise convolutional layer that applies every fil-
ter to every individual input channel independently. Thus, if there are f}, filters
and f; input channels, then this will output f;; x f; feature maps.

o separable_conv2d() creates a separable convolutional layer that first acts like a
depthwise convolutional layer, then applies a 1 x 1 convolutional layer to the
resulting feature maps. This makes it possible to apply filters to arbitrary sets of
inputs channels.

Exercises

1. What are the advantages of a CNN over a fully connected DNN for image classi-
fication?

2. Consider a CNN composed of three convolutional layers, each with 3 x 3 kernels,
a stride of 2, and SAME padding. The lowest layer outputs 100 feature maps, the

15 This name is quite misleading since this layer does not perform a deconvolution, which is a well-defined
mathematical operation (the inverse of a convolution).
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middle one outputs 200, and the top one outputs 400. The input images are RGB
images of 200 x 300 pixels. What is the total number of parameters in the CNN?
If we are using 32-bit floats, at least how much RAM will this network require
when making a prediction for a single instance? What about when training on a
mini-batch of 50 images?

3. If your GPU runs out of memory while training a CNN, what are five things you
could try to solve the problem?

4. Why would you want to add a max pooling layer rather than a convolutional
layer with the same stride?

5. When would you want to add a local response normalization layer?

6. Can you name the main innovations in AlexNet, compared to LeNet-5? What
about the main innovations in GoogLeNet and ResNet?

7. Build your own CNN and try to achieve the highest possible accuracy on MNIST.
8. Classifying large images using Inception v3.

a. Download some images of various animals. Load them in Python, for example
using the matplotlib.image.mpimg.imread() function. Resize and/or crop
them to 299 x 299 pixels, and ensure that they have just three channels (RGB),
with no transparency channel.

b. Download the latest pretrained Inception v3 model: the checkpoint is avail-
able at https://goo.gl/nxSQvl.

c. Create the Inception v3 model by calling the inception_v3() function, as
shown below. This must be done within an argument scope created by the
inception_v3_arg_scope() function. Also, you must set is_training=False
and num_classes=1001 like so:

from import inception
import as

X = tf.placeholder(tf.float32, shape=[None, 299, 299, 31])
with slim.arg_scope(inception.inception_v3_arg_scope()):
logits, end_points = inception.inception_v3(
X, num_classes=1001, is_training=False)
predictions = end_points["Predictions"]
saver = tf.train.Saver()

d. Open a session and use the Saver to restore the pretrained model checkpoint
you downloaded earlier.

e. Run the model to classify the images you prepared. Display the top five pre-
dictions for each image, along with the estimated probability (the list of class
names is available at https://goo.gl/brXRtZ). How accurate is the model?

9. Transfer learning for large image classification.
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a. Create a training set containing at least 100 images per class. For example, you

could classify your own pictures based on the location (beach, mountain, city,
etc.), or alternatively you can just use an existing dataset, such as the flowers
dataset or MIT’s places dataset (requires registration, and it is huge).

. Write a preprocessing step that will resize and crop the image to 299 x 299,

with some randomness for data augmentation.

Using the pretrained Inception v3 model from the previous exercise, freeze all
layers up to the bottleneck layer (i.e., the last layer before the output layer),
and replace the output layer with the appropriate number of outputs for your
new classification task (e.g., the flowers dataset has five mutually exclusive
classes so the output layer must have five neurons and use the softmax activa-
tion function).

Split your dataset into a training set and a test set. Train the model on the
training set and evaluate it on the test set.

10. Go through TensorFlow’s DeepDream tutorial. It is a fun way to familiarize your-
self with various ways of visualizing the patterns learned by a CNN, and to gener-
ate art using Deep Learning.

Solutions to these exercises are available in Appendix A.
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CHAPTER 14
Recurrent Neural Networks

The batter hits the ball. You immediately start running, anticipating the ball’s trajec-
tory. You track it and adapt your movements, and finally catch it (under a thunder of
applause). Predicting the future is what you do all the time, whether you are finishing
a friend’s sentence or anticipating the smell of coffee at breakfast. In this chapter, we
are going to discuss recurrent neural networks (RNN), a class of nets that can predict
the future (well, up to a point, of course). They can analyze time series data such as
stock prices, and tell you when to buy or sell. In autonomous driving systems, they
can anticipate car trajectories and help avoid accidents. More generally, they can work
on sequences of arbitrary lengths, rather than on fixed-sized inputs like all the nets we
have discussed so far. For example, they can take sentences, documents, or audio
samples as input, making them extremely useful for natural language processing
(NLP) systems such as automatic translation, speech-to-text, or sentiment analysis
(e.g., reading movie reviews and extracting the rater’s feeling about the movie).

Moreover, RNNs’ ability to anticipate also makes them capable of surprising creativ-
ity. You can ask them to predict which are the most likely next notes in a melody, then
randomly pick one of these notes and play it. Then ask the net for the next most likely
notes, play it, and repeat the process again and again. Before you know it, your net
will compose a melody such as the one produced by Google’s Magenta project. Simi-
larly, RNNs can generate sentences, image captions, and much more. The result is not
exactly Shakespeare or Mozart yet, but who knows what they will produce a few years
from now?

In this chapter, we will look at the fundamental concepts underlying RNNs, the main
problem they face (namely, vanishing/exploding gradients, discussed in Chapter 11),
and the solutions widely used to fight it: LSTM and GRU cells. Along the way, as
always, we will show how to implement RNNs using TensorFlow. Finally, we will take
a look at the architecture of a machine translation system.
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Recurrent Neurons

Up to now we have mostly looked at feedforward neural networks, where the activa-
tions flow only in one direction, from the input layer to the output layer (except for a
few networks in Appendix E). A recurrent neural network looks very much like a
feedforward neural network, except it also has connections pointing backward. Let’s
look at the simplest possible RNN, composed of just one neuron receiving inputs,
producing an output, and sending that output back to itself, as shown in Figure 14-1
(left). At each time step t (also called a frame), this recurrent neuron receives the inputs
X, as well as its own output from the previous time step, y, ;). We can represent this
tiny network against the time axis, as shown in Figure 14-1 (right). This is called
unrolling the network through time.

y Yiea) Yie2) Yen Yoy

.
.
‘\/

X X(

+3) Xt-2) Xt1) Xt
B> Time

Figure 14-1. A recurrent neuron (left), unrolled through time (right)

You can easily create a layer of recurrent neurons. At each time step ¢, every neuron
receives both the input vector x,, and the output vector from the previous time step
Y1) as shown in Figure 14-2. Note that both the inputs and outputs are vectors now
(when there was just a single neuron, the output was a scalar).

Figure 14-2. A layer of recurrent neurons (left), unrolled through time (right)

Each recurrent neuron has two sets of weights: one for the inputs x,, and the other for
the outputs of the previous time step, y,). Let’s call these weight vectors w, and w,.
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The output of a single recurrent neuron can be computed pretty much as you might
expect, as shown in Equation 14-1 (b is the bias term and ¢(-) is the activation func-
tion, e.g., ReLU").

Equation 14-1. Output of a single recurrent neuron for a single instance

T T
y(t):‘p(x(t) Wit Y- ’“’y”’)

Just like for feedforward neural networks, we can compute a whole layer’s output in
one shot for a whole mini-batch using a vectorized form of the previous equation (see
Equation 14-2).

Equation 14-2. Outputs of a layer of recurrent neurons for all instances in a mini-
batch

Y = (X Wo+ Y1) W, +b)

W
=o([X Yi_1] W+b) with W= W

X

Y

Y, is an m X 1., Matrix containing the layer’s outputs at time step ¢ for each
instance in the mini-batch (m is the number of instances in the mini-batch and
n is the number of neurons).

neurons

Xy is an m x m,,,, matrix containing the inputs for all instances (;,,,, is the
number of input features).

W, is an #;,,,, X 1 matrix containing the connection weights for the inputs

of the current time step.

neurons

W, is an M,eons X 11 matrix containing the connection weights for the out-
puts of the previous time step.

neurons

The weight matrices W, and W, are often concatenated into a single weight
matrix W of shape (n +n ) X n (see the second line of Equation
14-2).

b is a vector of size n

inputs neurons neurons

neurons

containing each neuron’s bias term.

—

Note that many researchers prefer to use the hyperbolic tangent (tanh) activation function in RNNs rather

than the ReLU activation function. For example, take a look at by Vu Pham et al’s paper “Dropout Improves
Recurrent Neural Networks for Handwriting Recognition”. However, ReLU-based RNNs are also possible, as
shown in Quoc V. Le et al’s paper “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units”.
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Notice that Y, is a function of X, and Y,,_,), which is a function of X, and Y,_,,
which is a function of X, ,) and Y, 5, and so on. This makes Y, a function of all the
inputs since time t = 0 (that is, X5, X}, ..., X(;)). At the first time step, ¢ = 0, there are
no previous outputs, so they are typically assumed to be all zeros.

Memory Cells

Since the output of a recurrent neuron at time step ¢ is a function of all the inputs
from previous time steps, you could say it has a form of memory. A part of a neural
network that preserves some state across time steps is called a memory cell (or simply
a cell). A single recurrent neuron, or a layer of recurrent neurons, is a very basic cell,
but later in this chapter we will look at some more complex and powerful types of
cells.

In general a cell’s state at time step f, denoted h, (the “h” stands for “hidden”), is a
function of some inputs at that time step and its state at the previous time step: h, =
fth_1y X(). Its output at time step ¢, denoted y,,, is also a function of the previous
state and the current inputs. In the case of the basic cells we have discussed so far, the
output is simply equal to the state, but in more complex cells this is not always the
case, as shown in Figure 14-3.

y Yoo Yoy VYo
' -
T T ho) T h T
X Xo) Xy X2)
B> Time

Figure 14-3. A cells hidden state and its output may be different

Input and Output Sequences

An RNN can simultaneously take a sequence of inputs and produce a sequence of
outputs (see Figure 14-4, top-left network). For example, this type of network is use-
ful for predicting time series such as stock prices: you feed it the prices over the last N
days, and it must output the prices shifted by one day into the future (i.e., from N - 1
days ago to tomorrow).

Alternatively, you could feed the network a sequence of inputs, and ignore all outputs
except for the last one (see the top-right network). In other words, this is a sequence-
to-vector network. For example, you could feed the network a sequence of words cor-
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responding to a movie review, and the network would output a sentiment score (e.g.,
from -1 [hate] to +1 [love]).

Conversely, you could feed the network a single input at the first time step (and zeros
for all other time steps), and let it output a sequence (see the bottom-left network).
This is a vector-to-sequence network. For example, the input could be an image, and
the output could be a caption for that image.

Lastly, you could have a sequence-to-vector network, called an encoder, followed by a
vector-to-sequence network, called a decoder (see the bottom-right network). For
example, this can be used for translating a sentence from one language to another.
You would feed the network a sentence in one language, the encoder would convert
this sentence into a single vector representation, and then the decoder would decode
this vector into a sentence in another language. This two-step model, called an
Encoder-Decoder, works much better than trying to translate on the fly with a single
sequence-to-sequence RNN (like the one represented on the top left), since the last
words of a sentence can affect the first words of the translation, so you need to wait
until you have heard the whole sentence before translating it.

Figure 14-4. Seq to seq (top left), seq to vector (top right), vector to seq (bottom left),
delayed seq to seq (bottom right)

Sounds promising, so let’s start coding!
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Basic RNNs in TensorFlow

First, let’s implement a very simple RNN model, without using any of TensorFlow’s
RNN operations, to better understand what goes on under the hood. We will create
an RNN composed of a layer of five recurrent neurons (like the RNN represented in
Figure 14-2), using the tanh activation function. We will assume that the RNN runs
over only two time steps, taking input vectors of size 3 at each time step. The follow-
ing code builds this RNN, unrolled through two time steps:

n_inputs = 3
n_neurons = 5

X0 = tf.placeholder(tf.float32, [None, n_inputs])
X1 = tf.placeholder(tf.float32, [None, n_inputs])

Wx = tf.Variable(tf.random_normal(shape=[n_1inputs, n_neurons],dtype=tf.float32))
Wy = tf.Variable(tf.random_normal(shape=[n_neurons,n_neurons],dtype=tf.float32))
b = tf.variable(tf.zeros([1, n_neurons], dtype=tf.float32))

YO = tf.tanh(tf.matmul(X0, Wx) + b)
Y1 = tf.tanh(tf.matmul(Y0O, Wy) + tf.matmul(X1, Wx) + b)

init = tf.global_variables_initializer()

This network looks much like a two-layer feedforward neural network, with a few
twists: first, the same weights and bias terms are shared by both layers, and second,
we feed inputs at each layer, and we get outputs from each layer. To run the model, we
need to feed it the inputs at both time steps, like so:

import as

# Mini-batch: instance 0,instance 1,instance 2,instance 3
X0_batch = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 0, 1]]) # t
X1_batch = np.array([[9, 8, 7], [0, 0, 0], [6, 5, 4], [3, 2, 1]]) # t

]
o)

with tf.Session() as sess:
init.run()
Y0_val, Y1_val = sess.run([YO, Y1], feed_dict={X0: X0_batch, X1: X1_batch})
This mini-batch contains four instances, each with an input sequence composed of
exactly two inputs. At the end, Y0_val and Y1_val contain the outputs of the network
at both time steps for all neurons and all instances in the mini-batch:

>>> print(YO_val) # output at t = 0

[[-0.2964572 ©.82874775 -0.34216955 -0.75720584 0.19011548] # instance 0
[-0.12842922 0.99981797 0.84704727 -0.99570125 0.38665548] # instance 1
[ 0.04731077 0.99999976 0.99330056 -0.999933 0.55339795] # instance 2
[ 0.70323634 0.99309105 0.99909431 -0.85363263 0.7472108 ]] # instance 3

>>> print(Yl_val) # output at t = 1
[[ 0.51955646 1. 0.99999022 -0.99984968 -0.24616946] # instance 0
[-0.70553327 -0.11918639 0.48885304 0.08917919 -0.26579669] # instance 1
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[-0.32477224 0.99996376 0.99933046 -0.99711186 0.10981458] # instance 2
[-0.43738723 0.91517633 0.97817528 -0.91763324 0.11047263]] # instance 3

That wasn’t too hard, but of course if you want to be able to run an RNN over 100
time steps, the graph is going to be pretty big. Now let’s look at how to create the
same model using TensorFlow’s RNN operations.

Static Unrolling Through Time

The static_rnn() function creates an unrolled RNN network by chaining cells. The
following code creates the exact same model as the previous one:

X0 = tf.placeholder(tf.float32, [None, n_inputs])
X1 = tf.placeholder(tf.float32, [None, n_inputs])

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
output_seqs, states = tf.contrib.rnn.static_rnn(
basic_cell, [X0, X1], dtype=tf.float32)

YO, Y1 = output_segs
First we create the input placeholders, as before. Then we create a BasicRNNCell,
which you can think of as a factory that creates copies of the cell to build the unrolled
RNN (one for each time step). Then we call static_rnn(), giving it the cell factory
and the input tensors, and telling it the data type of the inputs (this is used to create
the initial state matrix, which by default is full of zeros). The static_rnn() function
calls the cell factory’s __call__() function once per input, creating two copies of the
cell (each containing a layer of five recurrent neurons), with shared weights and bias
terms, and it chains them just like we did earlier. The static_rnn() function returns
two objects. The first is a Python list containing the output tensors for each time step.
The second is a tensor containing the final states of the network. When you are using
basic cells, the final state is simply equal to the last output.

If there were 50 time steps, it would not be very convenient to have to define 50 input
placeholders and 50 output tensors. Moreover, at execution time you would have to
feed each of the 50 placeholders and manipulate the 50 outputs. Lets simplify this.
The following code builds the same RNN again, but this time it takes a single input
placeholder of shape [None, n_steps, n_inputs] where the first dimension is the
mini-batch size. Then it extracts the list of input sequences for each time step. X_seqs
is a Python list of n_steps tensors of shape [None, n_inputs], where once again the
first dimension is the mini-batch size. To do this, we first swap the first two dimen-
sions using the transpose() function, so that the time steps are now the first dimen-
sion. Then we extract a Python list of tensors along the first dimension (i.e., one
tensor per time step) using the unstack() function. The next two lines are the same
as before. Finally, we merge all the output tensors into a single tensor using the
stack() function, and we swap the first two dimensions to get a final outputs tensor
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of shape [None, n_steps, n_neurons] (again the first dimension is the mini-batch

size).

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
X_seqs = tf.unstack(tf.transpose(X, perm=[1, 0, 2]))
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
output_seqs, states = tf.contrib.rnn.static_rnn(

basic_cell, X_seqs, dtype=tf.float32)

outputs = tf.transpose(tf.stack(output_segs), perm=[1, 0, 2])

Now we can run the network by feeding it a single tensor that contains all the mini-

batch sequences:

X_batch = np.array([
#t =0 t =1

[[o, 1, 2], [9, 8, 711, #
[[3, 4, 5], [0, 0, 0]], #
[[6, 7, 8], [6, 5, 411, #
[[9, 0, 11, [3, 2, 111, #

D

with tf.Session() as sess:

init.run()

instance 0
instance 1
instance 2
instance 3

outputs_val = outputs.eval(feed_dict={X: X_batch})

And we get a single outputs_val tensor for all instances, all time steps, and all neu-

rons:

>>> print(outputs_val)

[[[-0.2964572
[ 0.51955646

[[-0.12842922
[-0.70553327

.04731077
.32477224

.70323634
.43738723

0.82874775
1.

0.99981797
-0.11918639

0.99999976
0.99996376

0.99309105
0.91517633

-0

0

0
0

.34216955
.99999022

.84704727
.48885304

.99330056
.99933046

.99909431
.97817528

-0.
-0.

-0.
0.

-0.
-0.

-0.
-0.

75720584
99984968

99570125
08917919

999933
99711186

85363263
91763324

0.19011548]
-0.24616946]1]

0.38665548]
-0.26579669]]

0.55339795]
0.10981458]]

0.7472108 ]
0.11047263]1]

However, this approach still builds a graph containing one cell per time step. If there
were 50 time steps, the graph would look pretty ugly. It is a bit like writing a program
without ever using loops (e.g., YO=f(0, X0); Y1=f(Y0, X1); Y2=f(Y1, X2); ...;
Y50=f(Y49, X50)). With such as large graph, you may even get out-of-memory
(OOM) errors during backpropagation (especially with the limited memory of GPU
cards), since it must store all tensor values during the forward pass so it can use them
to compute gradients during the reverse pass.

Fortunately, there is a better solution: the dynamic_rnn() function.
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Dynamic Unrolling Through Time

The dynamic_rnn() function uses a while_loop() operation to run over the cell the
appropriate number of times, and you can set swap_memory=True if you want it to
swap the GPU’s memory to the CPU’s memory during backpropagation to avoid
OOM errors. Conveniently, it also accepts a single tensor for all inputs at every time
step (shape [None, n_steps, n_inputs]) and it outputs a single tensor for all out-
puts at every time step (shape [None, n_steps, n_neurons]); there is no need to
stack, unstack, or transpose. The following code creates the same RNN as earlier
using the dynamic_rnn() function. It's so much nicer!

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)

During backpropagation, the while_loop() operation does the
appropriate magic: it stores the tensor values for each iteration dur-
ing the forward pass so it can use them to compute gradients dur-
ing the reverse pass.

Handling Variable Length Input Sequences

So far we have used only fixed-size input sequences (all exactly two steps long). What
if the input sequences have variable lengths (e.g., like sentences)? In this case you
should set the sequence_length parameter when calling the dynamic_rnn() (or
static_rnn()) function; it must be a 1D tensor indicating the length of the input
sequence for each instance. For example:

seq_length = tf.placeholder(tf.int32, [None])

[...]
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32,
sequence_length=seq_length)
For example, suppose the second input sequence contains only one input instead of
two. It must be padded with a zero vector in order to fit in the input tensor X (because
the input tensor’s second dimension is the size of the longest sequence—i.e., 2).

X_batch = np.array([
# step O step 1

[[e, 1, 2], [9, 8, 7]1], # instance 0@
[[3, 4, 51, [0, 0, 0]], # instance 1 (padded with a zero vector)
[[6, 7, 8], [6, 5, 4]], # instance 2
[[9, 0, 1], [3, 2, 1]1], # instance 3

D
seq_length_batch = np.array([2, 1, 2, 2])
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Of course, you now need to feed values for both placeholders X and seq_length:

with tf.Session() as sess:

init.run()

outputs_val, states_val = sess.run(

[outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})

Now the RNN outputs zero vectors for every time step past the input sequence length
(look at the second instance’s output for the second time step):

>>> print(outputs_val)

[[[-0.2964572
[ 0.51955646

[[-0.12842922
[ o.

[[ 0.04731077
[-0.32477224

[[ 0.70323634
[-0.43738723

0

1.

0

0.

0
0

0
0

.82874775 -0
0

.99981797 ©

(o]

.99999976
.99996376 0

.99309105 ©
.91517633 ©

.34216955
.99999022

.84704727

0.

.99330056
.99933046

.99909431
.97817528

-0.75720584 0.
-0.99984968 -0.

-0.99570125 0.
0. 0.

-0.999933 0.
-0.99711186 0.

-0.85363263 0.
-0.91763324 0.

19011548]
2461694611

38665548]
1]

55339795]
10981458]]

7472108 ]

# final state

# final state
# zero vector

# final state

11047263]]] # final state

Moreover, the states tensor contains the final state of each cell (excluding the zero

vectors):

>>> print(states_val)

[[ ©.51955646
[-0.12842922
[-0.32477224
[-0.43738723

1.

0.99981797
0.99996376
0.91517633

0.99999022 -0.99984968
0.84704727 -0.99570125
0.99933046 -0.99711186
0.97817528 -0.91763324

Handling Variable-Length Qutput Sequences

What if the output sequences have variable lengths as well? If you know in advance
what length each sequence will have (for example if you know that it will be the same
length as the input sequence), then you can set the sequence_length parameter as
described above. Unfortunately, in general this will not be possible: for example, the
length of a translated sentence is generally different from the length of the input sen-
tence. In this case, the most common solution is to define a special output called an
end-of-sequence token (EOS token). Any output past the EOS should be ignored (we
will discuss this later in this chapter).

-0.24616946]
0.38665548]
0.10981458]
0.11047263]]

H H B R

t &+t
n

I o R

Okay, now you know how to build an RNN network (or more precisely an RNN net-
work unrolled through time). But how do you train it?
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Training RNNs

To train an RNN, the trick is to unroll it through time (like we just did) and then
simply use regular backpropagation (see Figure 14-5). This strategy is called backpro-
pagation through time (BPTT).
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)

Figure 14-5. Backpropagation through time

Just like in regular backpropagation, there is a first forward pass through the unrolled
network (represented by the dashed arrows); then the output sequence is evaluated
Y( Y( are the first

ax

t t

min), min * 1)’ ’ max
and last output time steps, not counting the ignored outputs), and the gradients of
that cost function are propagated backward through the unrolled network (repre-
sented by the solid arrows); and finally the model parameters are updated using the
gradients computed during BPTT. Note that the gradients flow backward through all
the outputs used by the cost function, not just through the final output (for example,
in Figure 14-5 the cost function is computed using the last three outputs of the net-
work, Y, Y, and Y, so gradients flow through these three outputs, but not
through Y, and Y;)). Moreover, since the same parameters W and b are used at each
time step, backpropagation will do the right thing and sum over all time steps.

using a cost function C Y( ) (where t,, and ¢,

Training a Sequence Classifier

Let’s train an RNN to classify MNIST images. A convolutional neural network would
be better suited for image classification (see Chapter 13), but this makes for a simple
example that you are already familiar with. We will treat each image as a sequence of
28 rows of 28 pixels each (since each MNIST image is 28 x 28 pixels). We will use
cells of 150 recurrent neurons, plus a fully connected layer containing 10 neurons
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(one per class) connected to the output of the last time step, followed by a softmax
layer (see Figure 14-6).

Softmax

Fully Connected
10 units
A

D e U
1 3

X(0) X(1 ) X(25) X(27)

Figure 14-6. Sequence classifier

The construction phase is quite straightforward; it's pretty much the same as the
MNIST classifier we built in Chapter 10 except that an unrolled RNN replaces the
hidden layers. Note that the fully connected layer is connected to the states tensor,
which contains only the final state of the RNN (i.e., the 28" output). Also note that y
is a placeholder for the target classes.

from tensorflow.contrib.layers import fully_connected

n_steps = 28
n_inputs = 28
n_neurons = 150
n_outputs = 10

learning_rate = 0.001

X
y

tf.placeholder(tf.float32, [None, n_steps, n_inputs])
tf.placeholder(tf.int32, [None])

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32)

logits = fully_connected(states, n_outputs, activation_fn=None)

xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y, logits=logits)

loss = tf.reduce_mean(xentropy)

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

training_op = optimizer.minimize(loss)

correct = tf.nn.in_top_k(logits, vy, 1)

accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
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init = tf.global_variables_initializer()

Now let’s load the MNIST data and reshape the test data to [batch_size, n_steps,
n_inputs] as is expected by the network. We will take care of reshaping the training
data in a moment.

from import input_data

mnist = input_data.read_data_sets("/tmp/data/")
X_test = mnist.test.images.reshape((-1, n_steps, n_inputs))
y_test = mnist.test.labels

Now we are ready to train the RNN. The execution phase is exactly the same as for
the MNIST classifier in Chapter 10, except that we reshape each training batch before
feeding it to the network.

n_epochs = 100
batch_size = 150

with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size)
X_batch = X_batch.reshape((-1, n_steps, n_inputs))
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
acc_train = accuracy.eval(feed_dict={X: X_batch, y: y_batch})
acc_test = accuracy.eval(feed_dict={X: X_test, y: y_test})
print(epoch, "Train accuracy:", acc_train, "Test accuracy:", acc_test)

The output should look like this:

0 Train accuracy: 0.713333 Test accuracy: 0.7299
1 Train accuracy: 0.766667 Test accuracy: 0.7977

98 Trailn accuracy: 0.986667 Test accuracy: 0.9777
99 Train accuracy: 0.986667 Test accuracy: 0.9809

We get over 98% accuracy—not bad! Plus you would certainly get a better result by
tuning the hyperparameters, initializing the RNN weights using He initialization,
training longer, or adding a bit of regularization (e.g., dropout).

You can specify an initializer for the RNN by wrapping its

construction code in a variable scope (e.g, use
variable_scope("rnn", 1initializer=variance_scaling_inti

tializer()) to use He initialization).
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Training to Predict Time Series

Now let’s take a look at how to handle time series, such as stock prices, air tempera-
ture, brain wave patterns, and so on. In this section we will train an RNN to predict
the next value in a generated time series. Each training instance is a randomly
selected sequence of 20 consecutive values from the time series, and the target
sequence is the same as the input sequence, except it is shifted by one time step into
the future (see Figure 14-7).

Figure 14-7. Time series (left), and a training instance from that series (right)

First, let’s create the RNN. It will contain 100 recurrent neurons and we will unroll it
over 20 time steps since each training instance will be 20 inputs long. Each input will
contain only one feature (the value at that time). The targets are also sequences of 20
inputs, each containing a single value. The code is almost the same as earlier:

n_steps = 20
n_inputs = 1
n_neurons = 100
n_outputs = 1

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])

y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])

cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu)
outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)

In general you would have more than just one input feature. For
example, if you were trying to predict stock prices, you would
likely have many other input features at each time step, such as pri-
ces of competing stocks, ratings from analysts, or any other feature
that might help the system make its predictions.

At each time step we now have an output vector of size 100. But what we actually
want is a single output value at each time step. The simplest solution is to wrap the
cell in an OutputProjectionWrapper. A cell wrapper acts like a normal cell, proxying
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every method call to an underlying cell, but it also adds some functionality. The Out
putProjectionWrapper adds a fully connected layer of linear neurons (i.e., without
any activation function) on top of each output (but it does not affect the cell state).
All these fully connected layers share the same (trainable) weights and bias terms.
The resulting RNN is represented in Figure 14-8.

y y y y
10) 11) A(18) 119)

. N A A
FC FC

1 unit 1 unit

t it

FC

1 1 1 I
X X | X X
BasicRNNCell

OutputConnectionWrapper

Figure 14-8. RNN cells using output projections

Wrapping a cell is quite easy. Lets tweak the preceding code by wrapping the
BasicRNNCell into an OutputProjectionWrapper:

cell = tf.contrib.rnn.OutputProjectionWrapper(
tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu),
output_size=n_outputs)

So far, so good. Now we need to define the cost function. We will use the Mean
Squared Error (MSE), as we did in previous regression tasks. Next we will create an
Adam optimizer, the training op, and the variable initialization op, as usual:

learning_rate = 0.001

loss = tf.reduce_mean(tf.square(outputs - y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)

init = tf.global_variables_initializer()
Now on to the execution phase:

n_iterations = 10000
batch_size = 50

with tf.Session() as sess:
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init.run()
for iteration in range(n_iterations):
X_batch, y_batch = [...] # fetch the next training batch
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
if iteration % 100 == 0:
mse = loss.eval(feed_dict={X: X_batch, y: y_batch})
print(iteration, "\tMSE:", mse)

The program’s output should look like this:

0 MSE: 379.586
100 MSE: 14.58426
200 MSE: 7.14066
300 MSE: 3.98528
400 MSE: 2.00254
[...]

Once the model is trained, you can make predictions:

X_new = [...] # New sequences
y_pred = sess.run(outputs, feed_dict={X: X_new})

Figure 14-9 shows the predicted sequence for the instance we looked at earlier (in
Figure 14-7), after just 1,000 training iterations.

Figure 14-9. Time series prediction

Although using an OutputProjectionWrapper is the simplest solution to reduce the
dimensionality of the RNN’s output sequences down to just one value per time step
(per instance), it is not the most efficient. There is a trickier but more efficient solu-
tion: you can reshape the RNN outputs from [batch_size, n_steps, n_neurons]
to [batch_size * n_steps, n_neurons], then apply a single fully connected layer
with the appropriate output size (in our case just 1), which will result in an output
tensor of shape [batch_size * n_steps, n_outputs], and then reshape this tensor
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to [batch_size, n_steps, n_outputs]. These operations are represented in
Figure 14-10.

Figure 14-10. Stack all the outputs, apply the projection, then unstack the result

To implement this solution, we first revert to a basic cell, without the OutputProjec
tionWrapper:

cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.relu)

rnn_outputs, states = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
Then we stack all the outputs using the reshape() operation, apply the fully connec-
ted linear layer (without using any activation function; this is just a projection), and
finally unstack all the outputs, again using reshape():

stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_neurons])

stacked_outputs = fully_connected(stacked_rnn_outputs, n_outputs,

activation_fn=None)
outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])
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The rest of the code is the same as earlier. This can provide a significant speed boost
since there is just one fully connected layer instead of one per time step.

Creative RNN

Now that we have a model that can predict the future, we can use it to generate some
creative sequences, as explained at the beginning of the chapter. All we need is to pro-
vide it a seed sequence containing n_steps values (e.g., full of zeros), use the model to
predict the next value, append this predicted value to the sequence, feed the last
n_steps values to the model to predict the next value, and so on. This process gener-
ates a new sequence that has some resemblance to the original time series (see
Figure 14-11).

sequence = [0.] * n_steps

for iteration in range(300):
X_batch = np.array(sequence[-n_steps:]).reshape(1, n_steps, 1)
y_pred = sess.run(outputs, feed_dict={X: X_batch})
sequence.append(y_pred[0, -1, 0])

Figure 14-11. Creative sequences, seeded with zeros (left) or with an instance (right)

Now you can try to feed all your John Lennon albums to an RNN and see if it can
generate the next “Imagine” However, you will probably need a much more powerful
RNN, with more neurons, and also much deeper. Let’s look at deep RNNs now.

Deep RNNs

It is quite common to stack multiple layers of cells, as shown in Figure 14-12. This
gives you a deep RNN.
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Figure 14-12. Deep RNN (left), unrolled through time (right)

To implement a deep RNN in TensorFlow, you can create several cells and stack them
into a MultiRNNCell. In the following code we stack three identical cells (but you
could very well use various kinds of cells with a different number of neurons):

n_neurons = 100
n_layers = 3

basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

multi_layer_cell = tf.contrib.rnn.MultiRNNCell([basic_cell] * n_layers)

outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
That’s all there is to it! The states variable is a tuple containing one tensor per layer,
each representing the final state of that layer’s cell (with shape [batch_size, n_neu
rons]). If you set state_is_tuple=False when creating the MultiRNNCell, then
states becomes a single tensor containing the states from every layer, concatenated
along the column axis (i.e., its shape is [batch_size, n_layers * n_neurons]).
Note that before TensorFlow 0.11.0, this behavior was the default.

Distributing a Deep RNN Across Multiple GPUs

Chapter 12 pointed out that we can efficiently distribute deep RNNs across multiple
GPUs by pinning each layer to a different GPU (see Figure 12-16). However, if you
try to create each cell in a different device() block, it will not work:

with tf.device("/gpu:0"): # BAD! This is ignored.
layerl = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

with tf.device("/gpu:1"): # BAD! Ignored again.
layer2 = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

This fails because a BasicRNNCell is a cell factory, not a cell per se (as mentioned ear-
lier); no cells get created when you create the factory, and thus no variables do either.
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The device block is simply ignored. The cells actually get created later. When you call
dynamic_rnn(), it calls the MultiRNNCell, which calls each individual BasicRNNCell,

which create the actual cells (including their variables). Unfortunately, none of these
classes provide any way to control the devices on which the variables get created. If
you try to put the dynamic_rnn() call within a device block, the whole RNN gets pin-
ned to a single device. So are you stuck? Fortunately not! The trick is to create your
own cell wrapper:

import tensorflow as tf

class DeviceCellWrapper(tf.contrib.rnn.RNNCell):
def __init__(self, device, cell):
self._cell = cell
self._device = device

def state_size(self):
return self._cell.state_size

def output_size(self):
return self._cell.output_size

def __call__(self, inputs, state, scope=None):

with tf.device(self._device):
return self._cell(inputs, state, scope)

This wrapper simply proxies every method call to another cell, except it wraps the

__call__() function within a device block.? Now you can distribute each layer on a
different GPU:

devices = ["/gpu:0", "/gpu:1", "/gpu:2"]

cells = [DeviceCellWrapper(dev,tf.contrib.rnn.BasicRNNCell(num_units=n_neurons))
for dev in devices]

multi_layer_cell = tf.contrib.rnn.MultiRNNCell(cells)

outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)

Do not set state_1is_tuple=False, or the MultiRNNCell will con-
catenate all the cell states into a single tensor, on a single GPU.

\

2 This uses the decorator design pattern.

398 | Chapter 14: Recurrent Neural Networks



Applying Dropout

If you build a very deep RNN, it may end up overfitting the training set. To prevent
that, a common technique is to apply dropout (introduced in Chapter 11). You can
simply add a dropout layer before or after the RNN as usual, but if you also want to
apply dropout between the RNN layers, you need to use a DropoutWrapper. The fol-
lowing code applies dropout to the inputs of each layer in the RNN, dropping each
input with a 50% probability:

keep_prob = 0.5

cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)

cell_drop = tf.contrib.rnn.DropoutWrapper(cell, input_keep_prob=keep_prob)
multi_layer_cell = tf.contrib.rnn.MultiRNNCell([cell_drop] * n_layers)
rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)

Note that it is also possible to apply dropout to the outputs by setting out
put_keep_prob.

The main problem with this code is that it will apply dropout not only during train-
ing but also during testing, which is not what you want (recall that dropout should be
applied only during training). Unfortunately, the DropoutWrapper does not support
an is_training placeholder (yet?), so you must either write your own dropout wrap-
per class, or have two different graphs: one for training, and the other for testing. The
second option looks like this:

import
is_training = (sys.argv[-1] == "train")

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_steps, n_outputs])
cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
if is_training:
cell = tf.contrib.rnn.DropoutWrapper(cell, input_keep_prob=keep_prob)
multi_layer_cell = tf.contrib.rnn.MultiRNNCell([cell] * n_layers)
rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
[...] # build the rest of the graph
init = tf.global_variables_initializer()
saver = tf.train.Saver()

with tf.Session() as sess:
if is_training:
init.run()
for iteration in range(n_iterations):
[...] # train the model
save_path = saver.save(sess, "/tmp/my_model.ckpt")
else:
saver.restore(sess, "/tmp/my_model.ckpt")
[...] # use the model
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With that you should be able to train all sorts of RNNs! Unfortunately, if you want to
train an RNN on long sequences, things will get a bit harder. Let’s see why and what
you can do about it.

The Difficulty of Training over Many Time Steps

To train an RNN on long sequences, you will need to run it over many time steps,
making the unrolled RNN a very deep network. Just like any deep neural network it
may suffer from the vanishing/exploding gradients problem (discussed in Chap-
ter 11) and take forever to train. Many of the tricks we discussed to alleviate this
problem can be used for deep unrolled RNNs as well: good parameter initialization,
nonsaturating activation functions (e.g., ReLU), Batch Normalization, Gradient Clip-
ping, and faster optimizers. However, if the RNN needs to handle even moderately
long sequences (e.g., 100 inputs), then training will still be very slow.

The simplest and most common solution to this problem is to unroll the RNN only
over a limited number of time steps during training. This is called truncated backpro-
pagation through time. In TensorFlow you can implement it simply by truncating the
input sequences. For example, in the time series prediction problem, you would sim-
ply reduce n_steps during training. The problem, of course, is that the model will
not be able to learn long-term patterns. One workaround could be to make sure that
these shortened sequences contain both old and recent data, so that the model can
learn to use both (e.g., the sequence could contain monthly data for the last five
months, then weekly data for the last five weeks, then daily data over the last five
days). But this workaround has its limits: what if fine-grained data from last year is
actually useful? What if there was a brief but significant event that absolutely must be
taken into account, even years later (e.g., the result of an election)?

Besides the long training time, a second problem faced by long-running RNNs is the
fact that the memory of the first inputs gradually fades away. Indeed, due to the trans-
formations that the data goes through when traversing an RNN, some information is
lost after each time step. After a while, the RNN’s state contains virtually no trace of
the first inputs. This can be a showstopper. For example, say you want to perform
sentiment analysis on a long review that starts with the four words “I loved this
movie,” but the rest of the review lists the many things that could have made the
movie even better. If the RNN gradually forgets the first four words, it will completely
misinterpret the review. To solve this problem, various types of cells with long-term
memory have been introduced. They have proved so successful that the basic cells are
not much used anymore. Let’s first look at the most popular of these long memory
cells: the LSTM cell.
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LSTM Cell

The Long Short-Term Memory (LSTM) cell was proposed in 1997° by Sepp Hochreiter
and Jirgen Schmidhuber, and it was gradually improved over the years by several
researchers, such as Alex Graves, Hasim Sak,* Wojciech Zaremba,’ and many more. If
you consider the LSTM cell as a black box, it can be used very much like a basic cell,
except it will perform much better; training will converge faster and it will detect
long-term dependencies in the data. In TensorFlow, you can simply use a BasicLSTM
Cell instead of a BasicRNNCell:

Istm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=n_neurons)

LSTM cells manage two state vectors, and for performance reasons they are kept
separate by default. You can change this default behavior by setting
state_1is_tuple=False when creating the BasicLSTMCell.

So how does an LSTM cell work? The architecture of a basic LSTM cell is shown in
Figure 14-13.

Figure 14-13. LSTM cell

3 “Long Short-Term Memory,” S. Hochreiter and J. Schmidhuber (1997).

4 “Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling,” H.
Sak et al. (2014).

5 “Recurrent Neural Network Regularization,” W. Zaremba et al. (2015).
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If you don’t look at what's inside the box, the LSTM cell looks exactly like a regular
cell, except that its state is split in two vectors: h, and ¢, (“c” stands for “cell”). You
can think of h, as the short-term state and ¢, as the long-term state.

Now let’s open the box! The key idea is that the network can learn what to store in the
long-term state, what to throw away, and what to read from it. As the long-term state
(1) traverses the network from left to right, you can see that it first goes through a
forget gate, dropping some memories, and then it adds some new memories via the
addition operation (which adds the memories that were selected by an input gate).
The result ¢, is sent straight out, without any further transformation. So, at each time
step, some memories are dropped and some memories are added. Moreover, after the
addition operation, the long-term state is copied and passed through the tanh func-
tion, and then the result is filtered by the output gate. This produces the short-term
state h,, (which is equal to the cell’s output for this time step y,). Now let’s look at
where new memories come from and how the gates work.

First, the current input vector x,, and the previous short-term state h,,_,, are fed to
four different fully connected layers. They all serve a different purpose:

+ The main layer is the one that outputs g,. It has the usual role of analyzing the
current inputs X, and the previous (short-term) state h;,_,. In a basic cell, there is
nothing else than this layer, and its output goes straight out to y, and h,. In con-
trast, in an LSTM cell this layer’s output does not go straight out, but instead it is
partially stored in the long-term state.

o The three other layers are gate controllers. Since they use the logistic activation
function, their outputs range from 0 to 1. As you can see, their outputs are fed to
element-wise multiplication operations, so if they output Os, they close the gate,
and if they output 1s, they open it. Specifically:

— The forget gate (controlled by f,) controls which parts of the long-term state
should be erased.

— The input gate (controlled by i) controls which parts of g, should be added
to the long-term state (this is why we said it was only “partially stored”).

— Finally, the output gate (controlled by o) controls which parts of the long-
term state should be read and output at this time step (both to h,) and y,,.

In short, an LSTM cell can learn to recognize an important input (that’s the role of the
input gate), store it in the long-term state, learn to preserve it for as long as it is
needed (that’s the role of the forget gate), and learn to extract it whenever it is needed.
This explains why they have been amazingly successful at capturing long-term pat-
terns in time series, long texts, audio recordings, and more.
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Equation 14-3 summarizes how to compute the cell’s long-term state, its short-term
state, and its output at each time step for a single instance (the equations for a whole
mini-batch are very similar).

Equation 14-3. LSTM computations

. T T
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¢ W, W, W, W, are the weight matrices of each of the four layers for their con-
nection to the input vector X.

¢ W, Wy, W, and W,,, are the weight matrices of each of the four layers for their
connection to the previous short-term state h,_,,.

+ b, b, b,, and b, are the bias terms for each of the four layers. Note that Tensor-
Flow initializes b, to a vector full of 1s instead of 0s. This prevents forgetting
everything at the beginning of training.

Peephole Connections

In a basic LSTM cell, the gate controllers can look only at the input x,, and the previ-
ous short-term state h,_,,. It may be a good idea to give them a bit more context by
letting them peek at the long-term state as well. This idea was proposed by Felix Gers
and Jiirgen Schmidhuber in 2000.° They proposed an LSTM variant with extra con-
nections called peephole connections: the previous long-term state ¢,_,, is added as an
input to the controllers of the forget gate and the input gate, and the current long-
term state ¢, is added as input to the controller of the output gate.

To implement peephole connections in TensorFlow, you must use the LSTMCell
instead of the BasicLSTMCell and set use_peepholes=True:

lstm_cell = tf.contrib.rnn.LSTMCell(num_units=n_neurons, use_peepholes=True)

6 “Recurrent Nets that Time and Count,” E. Gers and J. Schmidhuber (2000).
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There are many other variants of the LSTM cell. One particularly popular variant is
the GRU cell, which we will look at now.

GRU Cell

The Gated Recurrent Unit (GRU) cell (see Figure 14-14) was proposed by Kyunghyun
Cho et al. in a 2014 paper’ that also introduced the Encoder-Decoder network we
mentioned earlier.

Figure 14-14. GRU cell

The GRU cell is a simplified version of the LSTM cell, and it seems to perform just as
well® (which explains its growing popularity). The main simplifications are:
« Both state vectors are merged into a single vector h,,.

« A single gate controller controls both the forget gate and the input gate. If the
gate controller outputs a 1, the input gate is open and the forget gate is closed. If

7 “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,” K. Cho
etal. (2014).

8 A 2015 paper by Klaus Greff et al., “LSTM: A Search Space Odyssey;” seems to show that all LSTM variants
perform roughly the same.
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it outputs a 0, the opposite happens. In other words, whenever a memory must
be stored, the location where it will be stored is erased first. This is actually a fre-
quent variant to the LSTM cell in and of itself.

o There is no output gate; the full state vector is output at every time step. How-
ever, there is a new gate controller that controls which part of the previous state
will be shown to the main layer.

Equation 14-4 summarizes how to compute the cell’s state at each time step for a sin-
gle instance.

Equation 14-4. GRU computations
T T
2y = o(Wae' X+ Wi By

T T
X = oWy X+ Wy, B )
T T
gy = tanh (W x + Wy, ' (ry ® B y))

by = (1-7)) ® tanh (W, " b+ @)

Creating a GRU cell in TensorFlow is trivial:
gru_cell = tf.contrib.rnn.GRUCell(num_units=n_neurons)

LSTM or GRU cells are one of the main reasons behind the success of RNNs in recent
years, in particular for applications in natural language processing (NLP).

Natural Language Processing

Most of the state-of-the-art NLP applications, such as machine translation, automatic
summarization, parsing, sentiment analysis, and more, are now based (at least in
part) on RNNSs. In this last section, we will take a quick look at what a machine trans-
lation model looks like. This topic is very well covered by TensorFlow’s awesome
Word2Vec and Seq2Seq tutorials, so you should definitely check them out.

Word Embeddings

Before we start, we need to choose a word representation. One option could be to
represent each word using a one-hot vector. Suppose your vocabulary contains
50,000 words, then the n'* word would be represented as a 50,000-dimensional vector,
full of Os except for a 1 at the n position. However, with such a large vocabulary, this
sparse representation would not be efficient at all. Ideally, you want similar words to
have similar representations, making it easy for the model to generalize what it learns
about a word to all similar words. For example, if the model is told that “I drink milk”
is a valid sentence, and if it knows that “milk” is close to “water” but far from “shoes,”
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then it will know that “I drink water” is probably a valid sentence as well, while “I
drink shoes” is probably not. But how can you come up with such a meaningful rep-
resentation?

The most common solution is to represent each word in the vocabulary using a fairly
small and dense vector (e.g., 150 dimensions), called an embedding, and just let the
neural network learn a good embedding for each word during training. At the begin-
ning of training, embeddings are simply chosen randomly, but during training, back-
propagation automatically moves the embeddings around in a way that helps the
neural network perform its task. Typically this means that similar words will gradu-
ally cluster close to one another, and even end up organized in a rather meaningful
way. For example, embeddings may end up placed along various axes that represent
gender, singular/plural, adjective/noun, and so on. The result can be truly amazing.’

In TensorFlow, you first need to create the variable representing the embeddings for
every word in your vocabulary (initialized randomly):

vocabulary_size = 50000
embedding_size = 150
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))

Now suppose you want to feed the sentence “I drink milk” to your neural network.
You should first preprocess the sentence and break it into a list of known words. For
example you may remove unnecessary characters, replace unknown words by a pre-
defined token word such as “[UNK], replace numerical values by “[NUM]’, replace
URLs by “[URL]”, and so on. Once you have a list of known words, you can look up
each word’s integer identifier (from 0 to 49999) in a dictionary, for example [72, 3335,
288]. At that point, you are ready to feed these word identifiers to TensorFlow using a
placeholder, and apply the embedding_lookup() function to get the corresponding
embeddings:

train_inputs = tf.placeholder(tf.int32, shape=[None]) # from 1ids...
embed = tf.nn.embedding_lookup(embeddings, train_inputs) # ...to embeddings

Once your model has learned good word embeddings, they can actually be reused
fairly efficiently in any NLP application: after all, “milk” is still close to “water” and far
from “shoes” no matter what your application is. In fact, instead of training your own
word embeddings, you may want to download pretrained word embeddings. Just like
when reusing pretrained layers (see Chapter 11), you can choose to freeze the pre-
trained embeddings (e.g., creating the embeddings variable using trainable=False)
or let backpropagation tweak them for your application. The first option will speed
up training, but the second may lead to slightly higher performance.

9 For more details, check out Christopher Olah’s great post, or Sebastian Ruder’s series of posts.
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Embeddings are also useful for representing categorical attributes
that can take on a large number of different values, especially when
there are complex similarities between values. For example, con-
sider professions, hobbies, dishes, species, brands, and so on.

You now have almost all the tools you need to implement a machine translation sys-
tem. Let’s look at this now.

An Encoder—Decoder Network for Machine Translation

Let’s take a look at a simple machine translation model™ that will translate English
sentences to French (see Figure 14-15).

Figure 14-15. A simple machine translation model

The English sentences are fed to the encoder, and the decoder outputs the French
translations. Note that the French translations are also used as inputs to the decoder,
but pushed back by one step. In other words, the decoder is given as input the word
that it should have output at the previous step (regardless of what it actually output).
For the very first word, it is given a token that represents the beginning of the sen-

10 “Sequence to Sequence learning with Neural Networks,” I. Sutskever et al. (2014).
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tence (e.g., “<go>"). The decoder is expected to end the sentence with an end-of-
sequence (EOS) token (e.g., “<e0s>”).

Note that the English sentences are reversed before they are fed to the encoder. For
example “T drink milk” is reversed to “milk drink I” This ensures that the beginning
of the English sentence will be fed last to the encoder, which is useful because that’s
generally the first thing that the decoder needs to translate.

Each word is initially represented by a simple integer identifier (e.g., 288 for the word
“milk”). Next, an embedding lookup returns the word embedding (as explained ear-
lier, this is a dense, fairly low-dimensional vector). These word embeddings are what
is actually fed to the encoder and the decoder.

At each step, the decoder outputs a score for each word in the output vocabulary (i.e.,
French), and then the Softmax layer turns these scores into probabilities. For exam-
ple, at the first step the word “J¢” may have a probability of 20%, “Tu” may have a
probability of 1%, and so on. The word with the highest probability is output. This is
very much like a regular classification task, so you can train the model using the soft
max_cross_entropy_with_logits() function.

Note that at inference time (after training), you will not have the target sentence to
feed to the decoder. Instead, simply feed the decoder the word that it output at the
previous step, as shown in Figure 14-16 (this will require an embedding lookup that
is not shown on the diagram).

__________________________________________________

<go>

Figure 14-16. Feeding the previous output word as input at inference time

Okay, now you have the big picture. However, if you go through TensorFlow’s
sequence-to-sequence tutorial and you look at the code in run/translate/
seq2seq_model.py (in the TensorFlow models), you will notice a few important differ-
ences:
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o First, so far we have assumed that all input sequences (to the encoder and to the
decoder) have a constant length. But obviously sentence lengths may vary. There
are several ways that this can be handled—for example, using the
sequence_length argument to the static_rnn() or dynamic_rnn() functions to
specify each sentence’s length (as discussed earlier). However, another approach
is used in the tutorial (presumably for performance reasons): sentences are grou-
ped into buckets of similar lengths (e.g., a bucket for the 1- to 6-word sentences,
another for the 7- to 12-word sentences, and so on!!), and the shorter sentences
are padded using a special padding token (e.g., “<pad>”). For example “I drink
milk” becomes “<pad> <pad> <pad> milk drink I”, and its translation becomes
“Te bois du lait <eos> <pad>”. Of course, we want to ignore any output past the
EOS token. For this, the tutorial’s implementation uses a target_weights vector.
For example, for the target sentence “Je bois du lait <eos> <pad>”, the weights
would be set to [1.0, 1.0, 1.0, 1.0, 1.0, 0.0] (notice the weight 0.0 that
corresponds to the padding token in the target sentence). Simply multiplying the
losses by the target weights will zero out the losses that correspond to words past
EOS tokens.

« Second, when the output vocabulary is large (which is the case here), outputting
a probability for each and every possible word would be terribly slow. If the tar-
get vocabulary contains, say, 50,000 French words, then the decoder would out-
put 50,000-dimensional vectors, and then computing the softmax function over
such a large vector would be very computationally intensive. To avoid this, one
solution is to let the decoder output much smaller vectors, such as 1,000-
dimensional vectors, then use a sampling technique to estimate the loss without
having to compute it over every single word in the target vocabulary. This Sam-
pled Softmax technique was introduced in 2015 by Sébastien Jean et al.'”? In Ten-
sorFlow you can use the sampled_softmax_loss() function.

o Third, the tutorial’s implementation uses an attention mechanism that lets the
decoder peek into the input sequence. Attention augmented RNNs are beyond
the scope of this book, but if you are interested there are helpful papers about
machine translation," machine reading,' and image captions' using attention.

Finally, the tutorial’s implementation makes use of the tf.nn.legacy_seq2seq
module, which provides tools to build various Encoder-Decoder models easily.

11 The bucket sizes used in the tutorial are different.

12 “On Using Very Large Target Vocabulary for Neural Machine Translation,” S. Jean et al. (2015).

13 “Neural Machine Translation by Jointly Learning to Align and Translate,” D. Bahdanau et al. (2014).
14 “Long Short-Term Memory-Networks for Machine Reading,” J. Cheng (2016).
15 “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention,” K. Xu et al. (2015).
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For example, the embedding_rnn_seq2seq() function creates a simple Encoder—
Decoder model that automatically takes care of word embeddings for you, just
like the one represented in Figure 14-15. This code will likely be updated quickly
to use the new tf.nn.seq2seq module.

You now have all the tools you need to understand the sequence-to-sequence tutor-
ial’s implementation. Check it out and train your own English-to-French translator!

Exercises

1.

Can you think of a few applications for a sequence-to-sequence RNN? What
about a sequence-to-vector RNN? And a vector-to-sequence RNN?

. Why do people use encoder-decoder RNNs rather than plain sequence-to-

sequence RNNs for automatic translation?

. How could you combine a convolutional neural network with an RNN to classify

videos?

. What are the advantages of building an RNN using dynamic_rnn() rather than

static_rnn()?

. How can you deal with variable-length input sequences? What about variable-

length output sequences?

. What is a common way to distribute training and execution of a deep RNN

across multiple GPUs?

Embedded Reber grammars were used by Hochreiter and Schmidhuber in their
paper about LSTMs. They are artificial grammars that produce strings such as
“BPBTSXXVPSEPE” Check out Jenny Orr’s nice introduction to this topic.
Choose a particular embedded Reber grammar (such as the one represented on
Jenny Orr’s page), then train an RNN to identify whether a string respects that
grammar or not. You will first need to write a function capable of generating a
training batch containing about 50% strings that respect the grammar, and 50%
that don't.

. Tackle the “How much did it rain? IT” Kaggle competition. This is a time series

prediction task: you are given snapshots of polarimetric radar values and asked to
predict the hourly rain gauge total. Luis Andre Dutra e Silvas interview gives
some interesting insights into the techniques he used to reach second place in the
competition. In particular, he used an RNN composed of two LSTM layers.

Go through TensorFlow’s Word2Vec tutorial to create word embeddings, and
then go through the Seq2Seq tutorial to train an English-to-French translation
system.

Solutions to these exercises are available in Appendix A.
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CHAPTER 15
Autoencoders

Autoencoders are artificial neural networks capable of learning efficient representa-
tions of the input data, called codings, without any supervision (i.e., the training set is
unlabeled). These codings typically have a much lower dimensionality than the input
data, making autoencoders useful for dimensionality reduction (see Chapter 8). More
importantly, autoencoders act as powerful feature detectors, and they can be used for
unsupervised pretraining of deep neural networks (as we discussed in Chapter 11).
Lastly, they are capable of randomly generating new data that looks very similar to the
training data; this is called a generative model. For example, you could train an
autoencoder on pictures of faces, and it would then be able to generate new faces.

Surprisingly, autoencoders work by simply learning to copy their inputs to their out-
puts. This may sound like a trivial task, but we will see that constraining the network
in various ways can make it rather difficult. For example, you can limit the size of the
internal representation, or you can add noise to the inputs and train the network to
recover the original inputs. These constraints prevent the autoencoder from trivially
copying the inputs directly to the outputs, which forces it to learn efficient ways of
representing the data. In short, the codings are byproducts of the autoencoder’s
attempt to learn the identity function under some constraints.

In this chapter we will explain in more depth how autoencoders work, what types of
constraints can be imposed, and how to implement them using TensorFlow, whether
it is for dimensionality reduction, feature extraction, unsupervised pretraining, or as
generative models.

an



Efficient Data Representations

Which of the following number sequences do you find the easiest to memorize?

» 40,27, 25, 36, 81, 57, 10, 73, 19, 68
» 50, 25,76, 38,19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20

At first glance, it would seem that the first sequence should be easier, since it is much
shorter. However, if you look carefully at the second sequence, you may notice that it
follows two simple rules: even numbers are followed by their half, and odd numbers
are followed by their triple plus one (this is a famous sequence known as the hailstone
sequence). Once you notice this pattern, the second sequence becomes much easier to
memorize than the first because you only need to memorize the two rules, the first
number, and the length of the sequence. Note that if you could quickly and easily
memorize very long sequences, you would not care much about the existence of a
pattern in the second sequence. You would just learn every number by heart, and that
would be that. It is the fact that it is hard to memorize long sequences that makes it
useful to recognize patterns, and hopefully this clarifies why constraining an autoen-
coder during training pushes it to discover and exploit patterns in the data.

The relationship between memory, perception, and pattern matching was famously
studied by William Chase and Herbert Simon in the early 1970s." They observed that
expert chess players were able to memorize the positions of all the pieces in a game by
looking at the board for just 5 seconds, a task that most people would find impossible.
However, this was only the case when the pieces were placed in realistic positions
(from actual games), not when the pieces were placed randomly. Chess experts don’t
have a much better memory than you and I, they just see chess patterns more easily
thanks to their experience with the game. Noticing patterns helps them store infor-
mation efficiently.

Just like the chess players in this memory experiment, an autoencoder looks at the
inputs, converts them to an efficient internal representation, and then spits out some-
thing that (hopefully) looks very close to the inputs. An autoencoder is always com-
posed of two parts: an encoder (or recognition network) that converts the inputs to an
internal representation, followed by a decoder (or generative network) that converts
the internal representation to the outputs (see Figure 15-1).

As you can see, an autoencoder typically has the same architecture as a Multi-Layer
Perceptron (MLP; see Chapter 10), except that the number of neurons in the output
layer must be equal to the number of inputs. In this example, there is just one hidden

1 “Perception in chess,” W. Chase and H. Simon (1973).
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layer composed of two neurons (the encoder), and one output layer composed of
three neurons (the decoder). The outputs are often called the reconstructions since the
autoencoder tries to reconstruct the inputs, and the cost function contains a recon-
struction loss that penalizes the model when the reconstructions are different from the
inputs.

Figure 15-1. The chess memory experiment (left) and a simple autoencoder (right)

Because the internal representation has a lower dimensionality than the input data (it
is 2D instead of 3D), the autoencoder is said to be undercomplete. An undercomplete
autoencoder cannot trivially copy its inputs to the codings, yet it must find a way to
output a copy of its inputs. It is forced to learn the most important features in the
input data (and drop the unimportant ones).

Let’s see how to implement a very simple undercomplete autoencoder for dimension-
ality reduction.

Performing PCA with an Undercomplete Linear
Autoencoder

If the autoencoder uses only linear activations and the cost function is the Mean
Squared Error (MSE), then it can be shown that it ends up performing Principal
Component Analysis (see Chapter 8).

The following code builds a simple linear autoencoder to perform PCA on a 3D data-
set, projecting it to 2D:

import as
from import fully_connected
n_inputs = 3 # 3D inputs

n_hidden = 2 # 2D codings
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n_outputs = n_1inputs
learning_rate = 0.01

X = tf.placeholder(tf.float32, shape=[None, n_inputs])
hidden = fully_connected(X, n_hidden, activation_fn=None)
outputs = fully_connected(hidden, n_outputs, activation_fn=None)

reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE

optimizer = tf.train.AdamOptimizer(learning_rate)
training_op = optimizer.minimize(reconstruction_loss)

init = tf.global_variables_initializer()

This code is really not very different from all the MLPs we built in past chapters. The
two things to note are:

o The number of outputs is equal to the number of inputs.

o To perform simple PCA, we set activation_fn=None (i.e., all neurons are linear)
and the cost function is the MSE. We will see more complex autoencoders
shortly.

Now let’s load the dataset, train the model on the training set, and use it to encode the
test set (i.e., project it to 2D):

X_train, X_test = [...] # load the dataset

n_iterations = 1000
codings = hidden # the output of the hidden layer provides the codings

with tf.Session() as sess:
init.run()
for iteration in range(n_1iterations):
training_op.run(feed_dict={X: X_train}) # no labels (unsupervised)
codings_val = codings.eval(feed_dict={X: X_test})

Figure 15-2 shows the original 3D dataset (at the left) and the output of the autoen-
coder’s hidden layer (i.e., the coding layer, at the right). As you can see, the autoen-

coder found the best 2D plane to project the data onto, preserving as much variance
in the data as it could (just like PCA).
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Figure 15-2. PCA performed by an undercomplete linear autoencoder

Stacked Autoencoders

Just like other neural networks we have discussed, autoencoders can have multiple
hidden layers. In this case they are called stacked autoencoders (or deep autoencoders).
Adding more layers helps the autoencoder learn more complex codings. However,
one must be careful not to make the autoencoder too powerful. Imagine an encoder
so powerful that it just learns to map each input to a single arbitrary number (and the
decoder learns the reverse mapping). Obviously such an autoencoder will reconstruct
the training data perfectly, but it will not have learned any useful data representation
in the process (and it is unlikely to generalize well to new instances).

The architecture of a stacked autoencoder is typically symmetrical with regards to the
central hidden layer (the coding layer). To put it simply, it looks like a sandwich. For
example, an autoencoder for MNIST (introduced in Chapter 3) may have 784 inputs,
followed by a hidden layer with 300 neurons, then a central hidden layer of 150 neu-
rons, then another hidden layer with 300 neurons, and an output layer with 784 neu-
rons. This stacked autoencoder is represented in Figure 15-3.

Figure 15-3. Stacked autoencoder
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TensorFlow Implementation

You can implement a stacked autoencoder very much like a regular deep MLP. In par-
ticular, the same techniques we used in Chapter 11 for training deep nets can be
applied. For example, the following code builds a stacked autoencoder for MNIST,
using He initialization, the ELU activation function, and £, regularization. The code

should look very familiar, except that there are no labels (no y):

You can then train the model normally. Note that the digit labels (y_batch) are

n_inputs = 28 * 28 # for MNIST
n_hiddenl = 300

n_hidden2 = 150 # codings
n_hidden3 = n_hidden1

n_outputs = n_1inputs

learning_rate = 0.01
12_reg = 0.001

X = tf.placeholder(tf.float32, shape=[None, n_inputs])
with tf.contrib.framework.arg_scope(
[fully_connected],
activation_fn=tf.nn.elu,
weights_initializer=tf.contrib.layers.variance_scaling_initializer(),
weights_regularizer=tf.contrib.layers.12_regularizer(12_reg)):
hiddenl = fully_connected(X, n_hidden1)
hidden2 = fully_connected(hidden1, n_hidden2) # codings
hidden3 = fully_connected(hidden2, n_hidden3)
outputs = fully_connected(hidden3, n_outputs, activation_fn=None)

reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE

reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = tf.add_n([reconstruction_loss] + reg_losses)

optimizer = tf.train.AdamOptimizer(learning_rate)
training_op = optimizer.minimize(loss)

init = tf.global_variables_initializer()

unused:

n_epochs = 5
batch_size = 150
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
n_batches = mnist.train.num_examples // batch_size
for iteration in range(n_batches):
X_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(training_op, feed_dict={X: X_batch})
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Tying Weights

When an autoencoder is neatly symmetrical, like the one we just built, a common
technique is to tie the weights of the decoder layers to the weights of the encoder lay-
ers. This halves the number of weights in the model, speeding up training and limit-
ing the risk of overfitting. Specifically, if the autoencoder has a total of N layers (not
counting the input layer), and W, represents the connection weights of the h layer

(e.g., layer 1 is the first hidden layer, layer % is the coding layer, and layer N is the

output layer), then the decoder layer weights can be defined simply as: Wy ;,, = W, T

(with L=1,2, -+, ).

Unfortunately, implementing tied weights in TensorFlow using the fully_connec
ted() function is a bit cumbersome; it’s actually easier to just define the layers man-
ually. The code ends up significantly more verbose:

activation = tf.nn.elu
regularizer = tf.contrib.layers.12_regularizer(1l2_reg)
initializer = tf.contrib.layers.variance_scaling_initializer()

X = tf.placeholder(tf.float32, shape=[None, n_inputs])

weights1l_init = initializer([n_inputs, n_hidden1])
weights2_1init = initializer([n_hidden1, n_hidden2])

weilghts1l = tf.Variable(weights1_init, dtype=tf.float32, name="weightsi")
weights2 = tf.variable(weights2_init, dtype=tf.float32, name="weights2")
weilghts3 = tf.transpose(weights2, name="weights3") # tied weights
weights4 = tf.transpose(weightsl, name="weights4") # tied weights

bilasesl = tf.vVariable(tf.zeros(n_hiddenl), name="bilases1")
bilases2 = tf.vVariable(tf.zeros(n_hidden2), name="biases2")
bilases3 = tf.vVariable(tf.zeros(n_hidden3), name="bilases3")
biases4 = tf.Variable(tf.zeros(n_outputs), name="biases4")

hidden1l = activation(tf.matmul(X, weights1l) + biases1)
hidden2 = activation(tf.matmul(hiddenl, weights2) + biases2)
hidden3 = activation(tf.matmul(hidden2, weights3) + biases3)
outputs = tf.matmul(hidden3, weights4) + biases4

reconstruction_loss = tf.reduce_mean(tf.square(outputs - X))
reg_loss = regularizer(weightsl) + regularizer(weights2)
loss = reconstruction_loss + reg_loss

optimizer = tf.train.AdamOptimizer(learning_rate)
training_op = optimizer.minimize(loss)

init = tf.global_variables_initializer()

This code is fairly straightforward, but there are a few important things to note:
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« First, weight3 and weights4 are not variables, they are respectively the transpose
of weights2 and weights1 (they are “tied” to them).

« Second, since they are not variables, it's no use regularizing them: we only regula-
rize weights1 and weights2.

o Third, biases are never tied, and never regularized.

Training One Autoencoder at a Time

Rather than training the whole stacked autoencoder in one go like we just did, it is
often much faster to train one shallow autoencoder at a time, then stack all of them
into a single stacked autoencoder (hence the name), as shown on Figure 15-4. This is
especially useful for very deep autoencoders.

?: Inputs Copy parameters ?

[ Outputs

Outputs ]

[ Inputs Inputs ]

Phase 1 Phase 2 Phase 3
Train the first autoencoder Train the second autoencoder Stack the autoencoders

Figure 15-4. Training one autoencoder at a time

During the first phase of training, the first autoencoder learns to reconstruct the
inputs. During the second phase, the second autoencoder learns to reconstruct the
output of the first autoencoder’s hidden layer. Finally, you just build a big sandwich
using all these autoencoders, as shown in Figure 15-4 (i.e., you first stack the hidden
layers of each autoencoder, then the output layers in reverse order). This gives you
the final stacked autoencoder. You could easily train more autoencoders this way,
building a very deep stacked autoencoder.

To implement this multiphase training algorithm, the simplest approach is to use a
different TensorFlow graph for each phase. After training an autoencoder, you just
run the training set through it and capture the output of the hidden layer. This output
then serves as the training set for the next autoencoder. Once all autoencoders have
been trained this way, you simply copy the weights and biases from each autoencoder
and use them to build the stacked autoencoder. Implementing this approach is quite
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straightforward, so we won't detail it here, but please check out the code in the
Jupyter notebooks for an example.

Another approach is to use a single graph containing the whole stacked autoencoder,
plus some extra operations to perform each training phase, as shown in Figure 15-5.

Figure 15-5. A single graph to train a stacked autoencoder

This deserves a bit of explanation:

o The central column in the graph is the full stacked autoencoder. This part can be
used after training.

o The left column is the set of operations needed to run the first phase of training.
It creates an output layer that bypasses hidden layers 2 and 3. This output layer
shares the same weights and biases as the stacked autoencoder’s output layer. On
top of that are the training operations that will aim at making the output as close
as possible to the inputs. Thus, this phase will train the weights and biases for the
hidden layer 1 and the output layer (i.e., the first autoencoder).

o The right column in the graph is the set of operations needed to run the second
phase of training. It adds the training operation that will aim at making the out-
put of hidden layer 3 as close as possible to the output of hidden layer 1. Note
that we must freeze hidden layer 1 while running phase 2. This phase will train
the weights and biases for hidden layers 2 and 3 (i.e., the second autoencoder).

The TensorFlow code looks like this:

[...] # Build the whole stacked autoencoder normally.
# In this example, the weights are not tied.
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optimizer = tf.train.AdamOptimizer(learning_rate)

with tf.name_scope("phasel"):
phasel_outputs = tf.matmul(hiddenl, weights4) + biases4
phasel_reconstruction_loss = tf.reduce_mean(tf.square(phasel_outputs - X))
phasel_reg_loss = regularizer(weightsl) + regularizer(weights4)
phasel_loss = phasel_reconstruction_loss + phasel_reg_loss
phasel_training_op = optimizer.minimize(phasel_loss)

with tf.name_scope("phase2"):

phase2_reconstruction_loss = tf.reduce_mean(tf.square(hidden3 - hidden1))

phase2_reg_loss = regularizer(weights2) + regularizer(weights3)

phase2_loss = phase2_reconstruction_loss + phase2_reg_loss

train_vars = [weights2, biases2, weights3, biases3]

phase2_training_op = optimizer.minimize(phase2_loss, var_list=train_vars)
The first phase is rather straightforward: we just create an output layer that skips hid-
den layers 2 and 3, then build the training operations to minimize the distance
between the outputs and the inputs (plus some regularization).

The second phase just adds the operations needed to minimize the distance between
the output of hidden layer 3 and hidden layer 1 (also with some regularization). Most
importantly, we provide the list of trainable variables to the minimize() method,
making sure to leave out weights1 and biases1; this effectively freezes hidden layer 1
during phase 2.

During the execution phase, all you need to do is run the phase 1 training op for a
number of epochs, then the phase 2 training op for some more epochs.

Since hidden layer 1 is frozen during phase 2, its output will always
be the same for any given training instance. To avoid having to
recompute the output of hidden layer 1 at every single epoch, you
can compute it for the whole training set at the end of phase 1, then
directly feed the cached output of hidden layer 1 during phase 2.
This can give you a nice performance boost.

Visualizing the Reconstructions

One way to ensure that an autoencoder is properly trained is to compare the inputs
and the outputs. They must be fairly similar, and the differences should be unimpor-
tant details. Let’s plot two random digits and their reconstructions:

n_test_digits = 2
X_test = mnist.test.images[:n_test_digits]

with tf.Session() as sess:
[...] # Train the Autoencoder
outputs_val = outputs.eval(feed_dict={X: X_test})
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def plot_image(image, shape=[28, 28]):
plt.imshow(image.reshape(shape), cmap="Greys", interpolation="nearest")
plt.axis("off")

for digit_index in range(n_test_digits):
plt.subplot(n_test_digits, 2, digit_index * 2 + 1)
plot_image(X_test[digit_index])
plt.subplot(n_test_digits, 2, digit_index * 2 + 2)
plot_image(outputs_val[digit_index])

Figure 15-6 shows the resulting images.

Figure 15-6. Original digits (left) and their reconstructions (right)

Looks close enough. So the autoencoder has properly learned to reproduce its inputs,
but has it learned useful features? Let’s take a look.

Visualizing Features

Once your autoencoder has learned some features, you may want to take a look at
them. There are various techniques for this. Arguably the simplest technique is to
consider each neuron in every hidden layer, and find the training instances that acti-
vate it the most. This is especially useful for the top hidden layers since they often
capture relatively large features that you can easily spot in a group of training instan-
ces that contain them. For example, if a neuron strongly activates when it sees a cat in
a picture, it will be pretty obvious that the pictures that activate it the most all contain
cats. However, for lower layers, this technique does not work so well, as the features
are smaller and more abstract, so it’s often hard to understand exactly what the neu-
ron is getting all excited about.

Let’s look at another technique. For each neuron in the first hidden layer, you can cre-
ate an image where a pixel’s intensity corresponds to the weight of the connection to
the given neuron. For example, the following code plots the features learned by five
neurons in the first hidden layer:

with tf.Session() as sess:
[...] # train autoencoder
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weilghtsi_val = weightsil.eval()

for 1 in range(5):
plt.subplot(1l, 5, 1 + 1)
plot_image(weightsi_val.T[1])

You may get low-level features such as the ones shown in Figure 15-7.

Figure 15-7. Features learned by five neurons from the first hidden layer

The first four features seem to correspond to small patches, while the fifth feature
seems to look for vertical strokes (note that these features come from the stacked
denoising autoencoder that we will discuss later).

Another technique is to feed the autoencoder a random input image, measure the
activation of the neuron you are interested in, and then perform backpropagation to
tweak the image in such a way that the neuron will activate even more. If you iterate
several times (performing gradient ascent), the image will gradually turn into the
most exciting image (for the neuron). This is a useful technique to visualize the kinds
of inputs that a neuron is looking for.

Finally, if you are using an autoencoder to perform unsupervised pretraining—for
example, for a classification task—a simple way to verify that the features learned by
the autoencoder are useful is to measure the performance of the classifier.

Unsupervised Pretraining Using Stacked Autoencoders

As we discussed in Chapter 11, if you are tackling a complex supervised task but you
do not have a lot of labeled training data, one solution is to find a neural network that
performs a similar task, and then reuse its lower layers. This makes it possible to train
a high-performance model using only little training data because your neural net-
work won't have to learn all the low-level features; it will just reuse the feature detec-
tors learned by the existing net.

Similarly, if you have a large dataset but most of it is unlabeled, you can first train a
stacked autoencoder using all the data, then reuse the lower layers to create a neural
network for your actual task, and train it using the labeled data. For example,
Figure 15-8 shows how to use a stacked autoencoder to perform unsupervised pre-
training for a classification neural network. The stacked autoencoder itself is typically
trained one autoencoder at a time, as discussed earlier. When training the classifier, if
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you really don’t have much labeled training data, you may want to freeze the pre-
trained layers (at least the lower ones).

f = Inputs + = Labels

[ Outputs ] Softmax

=S

Hidden 2

Hidden 2 S b

Copy
] parameters ]
Hidden1  [-------------7"--> Hidden 1

( ) | )

Phase 1 Phase 2
Train the autoencoder Train the classifier
using all the data on the *labeled* data

Figure 15-8. Unsupervised pretraining using autoencoders

This situation is actually quite common, because building a large
unlabeled dataset is often cheap (e.g., a simple script can download
millions of images off the internet), but labeling them can only be
done reliably by humans (e.g., classifying images as cute or not).
Labeling instances is time-consuming and costly, so it is quite com-
mon to have only a few thousand labeled instances.

As we discussed earlier, one of the triggers of the current Deep Learning tsunami is
the discovery in 2006 by Geoffrey Hinton et al. that deep neural networks can be pre-
trained in an unsupervised fashion. They used restricted Boltzmann machines for
that (see Appendix E), but in 2007 Yoshua Bengio et al. showed? that autoencoders
worked just as well.

There is nothing special about the TensorFlow implementation: just train an autoen-
coder using all the training data, then reuse its encoder layers to create a new neural
network (see Chapter 11 for more details on how to reuse pretrained layers, or check
out the code examples in the Jupyter notebooks).

Up to now, in order to force the autoencoder to learn interesting features, we have
limited the size of the coding layer, making it undercomplete. There are actually
many other kinds of constraints that can be used, including ones that allow the cod-

2 “Greedy Layer-Wise Training of Deep Networks,” Y. Bengio et al. (2007).
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ing layer to be just as large as the inputs, or even larger, resulting in an overcomplete
autoencoder. Let’s look at some of those approaches now.

Denoising Autoencoders

Another way to force the autoencoder to learn useful features is to add noise to its
inputs, training it to recover the original, noise-free inputs. This prevents the autoen-
coder from trivially copying its inputs to its outputs, so it ends up having to find pat-
terns in the data.

The idea of using autoencoders to remove noise has been around since the 1980s
(e.g., it is mentioned in Yann LeCun’s 1987 master’s thesis). In a 2008 paper,’ Pascal
Vincent et al. showed that autoencoders could also be used for feature extraction. In a
2010 paper,* Vincent et al. introduced stacked denoising autoencoders.

The noise can be pure Gaussian noise added to the inputs, or it can be randomly
switched off inputs, just like in dropout (introduced in Chapter 11). Figure 15-9
shows both options.

Figure 15-9. Denoising autoencoders, with Gaussian noise (left) or dropout (right)

3 “Extracting and Composing Robust Features with Denoising Autoencoders,” P. Vincent et al. (2008).

4 “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denois-
ing Criterion,” P. Vincent et al. (2010).
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TensorFlow Implementation

Implementing denoising autoencoders in TensorFlow is not too hard. Let’s start with
Gaussian noise. It’s really just like training a regular autoencoder, except you add
noise to the inputs, and the reconstruction loss is calculated based on the original
inputs:

X = tf.placeholder(tf.float32, shape=[None, n_inputs])

X_noisy = X + tf.random_normal(tf.shape(X))

[...]
hiddenl = activation(tf.matmul(X_noisy, weightsl) + biases1)
[...]
reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE

[...]

Since the shape of X is only partially defined during the construc-
tion phase, we cannot know in advance the shape of the noise that
we must add to X. We cannot call X.get_shape() because this
would just return the partially defined shape of X ([None,
n_inputs]), and random_normal() expects a fully defined shape so
it would raise an exception. Instead, we call tf.shape(X), which
creates an operation that will return the shape of X at runtime,
which will be fully defined at that point.

Implementing the dropout version, which is more common, is not much harder:

from import dropout
keep_prob = 0.7

is_training = tf.placeholder_with_default(False, shape=(), name='is_training')
X = tf.placeholder(tf.float32, shape=[None, n_inputs])

X_drop = dropout(X, keep_prob, is_training=is_training)

[...]

hidden1l = activation(tf.matmul(X_drop, weightsl) + biasesl)

[...]

reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE

[...]

During training we must set is_training to True (as explained in Chapter 11) using
the feed_dict:

sess.run(training_op, feed_dict={X: X_batch, is_training: True})

However, during testing it is not necessary to set is_training to False, since we set
that as the default in the call to the placeholder_with_default() function.
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Sparse Autoencoders

Another kind of constraint that often leads to good feature extraction is sparsity: by
adding an appropriate term to the cost function, the autoencoder is pushed to reduce
the number of active neurons in the coding layer. For example, it may be pushed to
have on average only 5% significantly active neurons in the coding layer. This forces
the autoencoder to represent each input as a combination of a small number of acti-
vations. As a result, each neuron in the coding layer typically ends up representing a
useful feature (if you could speak only a few words per month, you would probably
try to make them worth listening to).

In order to favor sparse models, we must first measure the actual sparsity of the cod-
ing layer at each training iteration. We do so by computing the average activation of
each neuron in the coding layer, over the whole training batch. The batch size must
not be too small, or else the mean will not be accurate.

Once we have the mean activation per neuron, we want to penalize the neurons that
are too active by adding a sparsity loss to the cost function. For example, if we meas-
ure that a neuron has an average activation of 0.3, but the target sparsity is 0.1, it must
be penalized to activate less. One approach could be simply adding the squared error
(0.3 - 0.1)% to the cost function, but in practice a better approach is to use the Kull-
back-Leibler divergence (briefly discussed in Chapter 4), which has much stronger
gradients than the Mean Squared Error, as you can see in Figure 15-10.

Figure 15-10. Sparsity loss
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Given two discrete probability distributions P and Q, the KL divergence between
these distributions, noted Di; (P || Q), can be computed using Equation 15-1.

Equation 15-1. Kullback-Leibler divergence

Dy (P Q) = ;P(z‘) log %

In our case, we want to measure the divergence between the target probability p that a
neuron in the coding layer will activate, and the actual probability g (i.e., the mean
activation over the training batch). So the KL divergence simplifies to Equation 15-2.

Equation 15-2. KL divergence between the target sparsity p and the actual sparsity q

1-
Dyi(plla)=p log§+(1—p) 10g1__§

Once we have computed the sparsity loss for each neuron in the coding layer, we just
sum up these losses, and add the result to the cost function. In order to control the
relative importance of the sparsity loss and the reconstruction loss, we can multiply
the sparsity loss by a sparsity weight hyperparameter. If this weight is too high, the
model will stick closely to the target sparsity, but it may not reconstruct the inputs
properly, making the model useless. Conversely, if it is too low, the model will mostly
ignore the sparsity objective and it will not learn any interesting features.

TensorFlow Implementation
We now have all we need to implement a sparse autoencoder using TensorFlow:

def kl_divergence(p, q):
return p * tf.log(p / @) + (1 - p) * tf.log((1 - p) / (1 - @))

learning_rate = 1
sparsity_target

sparsity_weight

n n o

.0
0.1
0.2

[...] # Build a normal autoencoder (in this example the coding layer is hiddeni)

optimizer = tf.train.AdamOptimizer(learning_rate)

hidden1_mean = tf.reduce_mean(hidden1, axis=0) # batch mean

sparsity_loss = tf.reduce_sum(kl_divergence(sparsity_target, hiddenl_mean))
reconstruction_loss = tf.reduce_mean(tf.square(outputs - X)) # MSE

loss = reconstruction_loss + sparsity_weight * sparsity_loss

training_op = optimizer.minimize(loss)

An important detail is the fact that the activations of the coding layer must be
between 0 and 1 (but not equal to 0 or 1), or else the KL divergence will return NaN
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(Not a Number). A simple solution is to use the logistic activation function for the
coding layer:

hiddenl = tf.nn.sigmoid(tf.matmul(X, weights1l) + biasesl)

One simple trick can speed up convergence: instead of using the MSE, we can choose
a reconstruction loss that will have larger gradients. Cross entropy is often a good
choice. To use it, we must normalize the inputs to make them take on values from 0
to 1, and use the logistic activation function in the output layer so the outputs also
take on values from 0 to 1. TensorFlow’s sigmoid_cross_entropy_with_logits()
function takes care of efficiently applying the logistic (sigmoid) activation function to
the outputs and computing the cross entropy:
[...]

logits = tf.matmul(hiddenl, weights2) + biases2)
outputs = tf.nn.sigmoid(logits)

reconstruction_loss = tf.reduce_sum(
tf.nn.sigmoid_cross_entropy_with_logits(labels=X, logits=logits))
Note that the outputs operation is not needed during training (we use it only when
we want to look at the reconstructions).

Variational Autoencoders

Another important category of autoencoders was introduced in 2014 by Diederik
Kingma and Max Welling,” and has quickly become one of the most popular types of
autoencoders: variational autoencoders.

They are quite different from all the autoencoders we have discussed so far, in partic-
ular:

o They are probabilistic autoencoders, meaning that their outputs are partly deter-
mined by chance, even after training (as opposed to denoising autoencoders,
which use randomness only during training).

« Most importantly, they are generative autoencoders, meaning that they can gener-
ate new instances that look like they were sampled from the training set.

Both these properties make them rather similar to RBMs (see Appendix E), but they
are easier to train and the sampling process is much faster (with RBMs you need to
wait for the network to stabilize into a “thermal equilibrium” before you can sample a
new instance).

5 “Auto-Encoding Variational Bayes,” D. Kingma and M. Welling (2014).
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Lets take a look at how they work. Figure 15-11 (left) shows a variational autoen-
coder. You can recognize, of course, the basic structure of all autoencoders, with an
encoder followed by a decoder (in this example, they both have two hidden layers),
but there is a twist: instead of directly producing a coding for a given input, the
encoder produces a mean coding y and a standard deviation ¢. The actual coding is
then sampled randomly from a Gaussian distribution with mean y and standard devi-
ation o. After that the decoder just decodes the sampled coding normally. The right
part of the diagram shows a training instance going through this autoencoder. First,
the encoder produces i and o, then a coding is sampled randomly (notice that it is
not exactly located at y), and finally this coding is decoded, and the final output
resembles the training instance.

Figure 15-11. Variational autoencoder (left), and an instance going through it (right)

As you can see on the diagram, although the inputs may have a very convoluted dis-
tribution, a variational autoencoder tends to produce codings that look as though
they were sampled from a simple Gaussian distribution:® during training, the cost
function (discussed next) pushes the codings to gradually migrate within the coding
space (also called the latent space) to occupy a roughly (hyper)spherical region that
looks like a cloud of Gaussian points. One great consequence is that after training a

6 Variational autoencoders are actually more general; the codings are not limited to Gaussian distributions.
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variational autoencoder, you can very easily generate a new instance: just sample a
random coding from the Gaussian distribution, decode it, and voila!

So let’s look at the cost function. It is composed of two parts. The first is the usual
reconstruction loss that pushes the autoencoder to reproduce its inputs (we can use
cross entropy for this, as discussed earlier). The second is the latent loss that pushes
the autoencoder to have codings that look as though they were sampled from a simple
Gaussian distribution, for which we use the KL divergence between the target distri-
bution (the Gaussian distribution) and the actual distribution of the codings. The
math is a bit more complex than earlier, in particular because of the Gaussian noise,
which limits the amount of information that can be transmitted to the coding layer
(thus pushing the autoencoder to learn useful features). Luckily, the equations sim-
plify to the following code for the latent loss:”

eps = le-10 # smoothing term to avoid computing log(@) which is NaN
latent_loss = 0.5 * tf.reduce_sum(

tf.square(hidden3_sigma) + tf.square(hidden3_mean)

- 1 - tf.log(eps + tf.square(hidden3_sigma)))

One common variant is to train the encoder to output y = log(¢?) rather than o.
Wherever we need ¢ we can just compute 0 = exp (%) This makes it a bit easier for

the encoder to capture sigmas of different scales, and thus it helps speed up conver-
gence. The latent loss ends up a bit simpler:

latent_loss = 0.5 * tf.reduce_sum(
tf.exp(hidden3_gamma) + tf.square(hidden3_mean) - 1 - hidden3_gamma)

The following code builds the variational autoencoder shown in Figure 15-11 (left),
using the log(o?) variant:

n_inputs = 28 * 28 # for MNIST
n_hiddenl = 500

n_hidden2 = 500

n_hidden3 = 20 # codings
n_hidden4 = n_hidden2

n_hidden5 = n_hidden1

n_outputs = n_1inputs

learning_rate = 0.001

with tf.contrib.framework.arg_scope(
[fully_connected],
activation_fn=tf.nn.elu,
weilghts_initializer=tf.contrib.layers.variance_scaling_initializer()):
X = tf.placeholder(tf.float32, [None, n_inputs])

7 For more mathematical details, check out the original paper on variational autoencoders, or Carl Doersch’s
great tutorial (2016).
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hidden1l = fully_connected(X, n_hidden1)

hidden2 = fully_connected(hidden1, n_hidden2)

hidden3_mean = fully_connected(hidden2, n_hidden3, activation_fn=None)
hidden3_gamma = fully_connected(hidden2, n_hidden3, activation_fn=None)
hidden3_sigma = tf.exp(0.5 * hidden3_gamma)

noise = tf.random_normal(tf.shape(hidden3_sigma), dtype=tf.float32)
hidden3 = hidden3_mean + hidden3_sigma * noise

hidden4 = fully_connected(hidden3, n_hidden4)

hidden5 = fully_connected(hidden4, n_hidden5)

logits = fully_connected(hidden5, n_outputs, activation_fn=None)
outputs = tf.sigmoid(logits)

reconstruction_loss = tf.reduce_sum(
tf.nn.sigmoild_cross_entropy_with_logits(labels=X, logits=logits))
latent_loss = 0.5 * tf.reduce_sum(
tf.exp(hidden3_gamma) + tf.square(hidden3_mean) - 1 - hidden3_gamma)
cost = reconstruction_loss + latent_loss

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(cost)

init = tf.global_variables_initializer()

Generating Digits

Now let’s use this variational autoencoder to generate images that look like handwrit-
ten digits. All we need to do is train the model, then sample random codings from a
Gaussian distribution and decode them.

import as

n_digits = 60
n_epochs = 50
batch_size = 150

with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
n_batches = mnist.train.num_examples // batch_size
for iteration in range(n_batches):
X_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(training_op, feed_dict={X: X_batch})

codings_rnd = np.random.normal(size=[n_digits, n_hidden3])
outputs_val = outputs.eval(feed_dict={hidden3: codings_rnd})

That’s it. Now we can see what the “handwritten” digits produced by the autoencoder
look like (see Figure 15-12):

for iteration in range(n_digits):
plt.subplot(n_digits, 10, iteration + 1)
plot_image(outputs_val[iteration])
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Figure 15-12. Images of handwritten digits generated by the variational autoencoder

A majority of these digits look pretty convincing, while a few are rather “creative” But
don’t be too harsh on the autoencoder—it only started learning less than an hour ago.
Give it a bit more training time, and those digits will look better and better.

Other Autoencoders

The amazing successes of supervised learning in image recognition, speech recogni-
tion, text translation, and more have somewhat overshadowed unsupervised learning,
but it is actually booming. New architectures for autoencoders and other unsuper-
vised learning algorithms are invented regularly, so much so that we cannot cover
them all in this book. Here is a brief (by no means exhaustive) overview of a few more
types of autoencoders that you may want to check out:

Contractive autoencoder (CAE)®
The autoencoder is constrained during training so that the derivatives of the cod-
ings with regards to the inputs are small. In other words, two similar inputs must
have similar codings.

8 “Contractive Auto-Encoders: Explicit Invariance During Feature Extraction,” S. Rifai et al. (2011).
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Stacked convolutional autoencoders’
Autoencoders that learn to extract visual features by reconstructing images pro-
cessed through convolutional layers.

Generative stochastic network (GSN)*°
A generalization of denoising autoencoders, with the added capability to generate
data.

Winner-take-all (WTA) autoencoder!
During training, after computing the activations of all the neurons in the coding
layer, only the top k% activations for each neuron over the training batch are pre-
served, and the rest are set to zero. Naturally this leads to sparse codings. More-
over, a similar WTA approach can be used to produce sparse convolutional
autoencoders.

Adversarial autoencoders'
One network is trained to reproduce its inputs, and at the same time another is
trained to find inputs that the first network is unable to properly reconstruct.
This pushes the first autoencoder to learn robust codings.

Exercises

1. What are the main tasks that autoencoders are used for?

2. Suppose you want to train a classifier and you have plenty of unlabeled training
data, but only a few thousand labeled instances. How can autoencoders help?
How would you proceed?

3. If an autoencoder perfectly reconstructs the inputs, is it necessarily a good
autoencoder? How can you evaluate the performance of an autoencoder?

4. What are undercomplete and overcomplete autoencoders? What is the main risk
of an excessively undercomplete autoencoder? What about the main risk of an
overcomplete autoencoder?

5. How do you tie weights in a stacked autoencoder? What is the point of doing so?

6. What is a common technique to visualize features learned by the lower layer of a
stacked autoencoder? What about higher layers?

7. What is a generative model? Can you name a type of generative autoencoder?

9 “Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction,” J. Masci et al. (2011).
10 “GSNs: Generative Stochastic Networks,” G. Alain et al. (2015).
11 “Winner-Take-All Autoencoders,” A. Makhzani and B. Frey (2015).
12 “Adversarial Autoencoders,” A. Makhzani et al. (2016).
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8. Let’s use a denoising autoencoder to pretrain an image classifier:

You can use MNIST (simplest), or another large set of images such as CIFAR10
if you want a bigger challenge. If you choose CIFARI10, you need to write code
to load batches of images for training. If you want to skip this part, Tensor-
Flow’s model zoo contains tools to do just that.

Split the dataset into a training set and a test set. Train a deep denoising
autoencoder on the full training set.

Check that the images are fairly well reconstructed, and visualize the low-level
features. Visualize the images that most activate each neuron in the coding
layer.

Build a classification deep neural network, reusing the lower layers of the
autoencoder. Train it using only 10% of the training set. Can you get it to per-
form as well as the same classifier trained on the full training set?

Semantic hashing, introduced in 2008 by Ruslan Salakhutdinov and Geoffrey
Hinton," is a technique used for efficient information retrieval: a document (e.g.,
an image) is passed through a system, typically a neural network, which outputs a
fairly low-dimensional binary vector (e.g., 30 bits). Two similar documents are
likely to have identical or very similar hashes. By indexing each document using
its hash, it is possible to retrieve many documents similar to a particular docu-
ment almost instantly, even if there are billions of documents: just compute the
hash of the document and look up all documents with that same hash (or hashes
differing by just one or two bits). Let's implement semantic hashing using a
slightly tweaked stacked autoencoder:

Create a stacked autoencoder containing two hidden layers below the coding
layer, and train it on the image dataset you used in the previous exercise. The
coding layer should contain 30 neurons and use the logistic activation function
to output values between 0 and 1. After training, to produce the hash of an
image, you can simply run it through the autoencoder, take the output of the
coding layer, and round every value to the closest integer (0 or 1).

One neat trick proposed by Salakhutdinov and Hinton is to add Gaussian
noise (with zero mean) to the inputs of the coding layer, during training only.
In order to preserve a high signal-to-noise ratio, the autoencoder will learn to
feed large values to the coding layer (so that the noise becomes negligible). In
turn, this means that the logistic function of the coding layer will likely satu-
rate at 0 or 1. As a result, rounding the codings to 0 or 1 won’t distort them too
much, and this will improve the reliability of the hashes.

13 “Semantic Hashing,” R. Salakhutdinov and G. Hinton (2008).
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» Compute the hash of every image, and see if images with identical hashes look
alike. Since MNIST and CIFARI1O0 are labeled, a more objective way to measure
the performance of the autoencoder for semantic hashing is to ensure that
images with the same hash generally have the same class. One way to do this is
to measure the average Gini purity (introduced in Chapter 6) of the sets of
images with identical (or very similar) hashes.

o Try fine-tuning the hyperparameters using cross-validation.

» Note that with a labeled dataset, another approach is to train a convolutional
neural network (see Chapter 13) for classification, then use the layer below the
output layer to produce the hashes. See Jinma Gua and Jianmin Li’s 2015
paper.** See if that performs better.

10. Train a variational autoencoder on the image dataset used in the previous exerci-
ses (MNIST or CIFAR10), and make it generate images. Alternatively, you can try
to find an unlabeled dataset that you are interested in and see if you can generate
new samples.

Solutions to these exercises are available in Appendix A.

14 “CNN Based Hashing for Image Retrieval,” J. Gua and J. Li (2015).
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CHAPTER 16
Reinforcement Learning

Reinforcement Learning (RL) is one of the most exciting fields of Machine Learning
today, and also one of the oldest. It has been around since the 1950s, producing many
interesting applications over the years,' in particular in games (e.g., TD-Gammon, a
Backgammon playing program) and in machine control, but seldom making the
headline news. But a revolution took place in 2013 when researchers from an English
startup called DeepMind demonstrated a system that could learn to play just about
any Atari game from scratch,? eventually outperforming humans’® in most of them,
using only raw pixels as inputs and without any prior knowledge of the rules of the
games.* This was the first of a series of amazing feats, culminating in March 2016
with the victory of their system AlphaGo against Lee Sedol, the world champion of
the game of Go. No program had ever come close to beating a master of this game, let
alone the world champion. Today the whole field of RL is boiling with new ideas, with
a wide range of applications. DeepMind was bought by Google for over 500 million
dollars in 2014.

So how did they do it? With hindsight it seems rather simple: they applied the power
of Deep Learning to the field of Reinforcement Learning, and it worked beyond their
wildest dreams. In this chapter we will first explain what Reinforcement Learning is
and what it is good at, and then we will present two of the most important techniques
in deep Reinforcement Learning: policy gradients and deep Q-networks (DQN),

1 For more details, be sure to check out Richard Sutton and Andrew Barto’s book on RL, Reinforcement Learn-
ing: An Introduction (MIT Press), or David Silver’s free online RL course at University College London.

2 “Playing Atari with Deep Reinforcement Learning,” V. Mnih et al. (2013).

3 “Human-level control through deep reinforcement learning,” V. Mnih et al. (2015).

4 Check out the videos of DeepMind’s system learning to play Space Invaders, Breakout, and more at https://
g00.gl/yTsH6X.
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including a discussion of Markov decision processes (MDP). We will use these techni-
ques to train a model to balance a pole on a moving cart, and another to play Atari
games. The same techniques can be used for a wide variety of tasks, from walking
robots to self-driving cars.

Learning to Optimize Rewards

In Reinforcement Learning, a software agent makes observations and takes actions
within an environment, and in return it receives rewards. Its objective is to learn to act
in a way that will maximize its expected long-term rewards. If you don’t mind a bit of
anthropomorphism, you can think of positive rewards as pleasure, and negative
rewards as pain (the term “reward” is a bit misleading in this case). In short, the agent
acts in the environment and learns by trial and error to maximize its pleasure and
minimize its pain.

This is quite a broad setting, which can apply to a wide variety of tasks. Here are a few
examples (see Figure 16-1):

a. The agent can be the program controlling a walking robot. In this case, the envi-
ronment is the real world, the agent observes the environment through a set of
sensors such as cameras and touch sensors, and its actions consist of sending sig-
nals to activate motors. It may be programmed to get positive rewards whenever
it approaches the target destination, and negative rewards whenever it wastes
time, goes in the wrong direction, or falls down.

b. The agent can be the program controlling Ms. Pac-Man. In this case, the environ-
ment is a simulation of the Atari game, the actions are the nine possible joystick
positions (upper left, down, center, and so on), the observations are screenshots,
and the rewards are just the game points.

c. Similarly, the agent can be the program playing a board game such as the game of
Go.

d. The agent does not have to control a physically (or virtually) moving thing. For
example, it can be a smart thermostat, getting rewards whenever it is close to the
target temperature and saves energy, and negative rewards when humans need to
tweak the temperature, so the agent must learn to anticipate human needs.

e. The agent can observe stock market prices and decide how much to buy or sell
every second. Rewards are obviously the monetary gains and losses.
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Figure 16-1. Reinforcement Learning examples: (a) walking robot, (b) Ms. Pac-Man, (c)
Go player, (d) thermostat, (e) automatic trader®

Note that there may not be any positive rewards at all; for example, the agent may
move around in a maze, getting a negative reward at every time step, so it better find
the exit as quickly as possible! There are many other examples of tasks where Rein-
forcement Learning is well suited, such as self-driving cars, placing ads on a web
page, or controlling where an image classification system should focus its attention.

5 Images (a), (c), and (d) are reproduced from Wikipedia. (a) and (d) are in the public domain. (c) was created
by user Stevertigo and released under Creative Commons BY-SA 2.0. (b) is a screenshot from the Ms. Pac-
Man game, copyright Atari (the author believes it to be fair use in this chapter). (e) was reproduced from Pix-
abay, released under Creative Commons CCO0.
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Policy Search

The algorithm used by the software agent to determine its actions is called its policy.
For example, the policy could be a neural network taking observations as inputs and
outputting the action to take (see Figure 16-2).

Figure 16-2. Reinforcement Learning using a neural network policy

The policy can be any algorithm you can think of, and it does not even have to be
deterministic. For example, consider a robotic vacuum cleaner whose reward is the
amount of dust it picks up in 30 minutes. Its policy could be to move forward with
some probability p every second, or randomly rotate left or right with probability 1 -
p- The rotation angle would be a random angle between -r and +r. Since this policy
involves some randomness, it is called a stochastic policy. The robot will have an
erratic trajectory, which guarantees that it will eventually get to any place it can reach
and pick up all the dust. The question is: how much dust will it pick up in 30
minutes?

How would you train such a robot? There are just two policy parameters you can
tweak: the probability p and the angle range 7. One possible learning algorithm could
be to try out many different values for these parameters, and pick the combination
that performs best (see Figure 16-3). This is an example of policy search, in this case
using a brute force approach. However, when the policy space is too large (which is
generally the case), finding a good set of parameters this way is like searching for a
needle in a gigantic haystack.

Another way to explore the policy space is to use genetic algorithms. For example, you
could randomly create a first generation of 100 policies and try them out, then “kill”
the 80 worst policies® and make the 20 survivors produce 4 offspring each. An off-

6 It is often better to give the poor performers a slight chance of survival, to preserve some diversity in the “gene
pool”
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spring is just a copy of its parent” plus some random variation. The surviving policies
plus their offspring together constitute the second generation. You can continue to
iterate through generations this way, until you find a good policy.

Figure 16-3. Four points in policy space and the agent’s corresponding behavior

Yet another approach is to use optimization techniques, by evaluating the gradients of
the rewards with regards to the policy parameters, then tweaking these parameters by
following the gradient toward higher rewards (gradient ascent). This approach is
called policy gradients (PG), which we will discuss in more detail later in this chapter.
For example, going back to the vacuum cleaner robot, you could slightly increase p
and evaluate whether this increases the amount of dust picked up by the robot in 30
minutes; if it does, then increase p some more, or else reduce p. We will implement a
popular PG algorithm using TensorFlow, but before we do we need to create an envi-
ronment for the agent to live in, so it’s time to introduce OpenAI gym.

Introduction to OpenAl Gym

One of the challenges of Reinforcement Learning is that in order to train an agent,
you first need to have a working environment. If you want to program an agent that
will learn to play an Atari game, you will need an Atari game simulator. If you want to
program a walking robot, then the environment is the real world and you can directly
train your robot in that environment, but this has its limits: if the robot falls off a cliff,
you can't just click “undo” You can't speed up time either; adding more computing

7 If there is a single parent, this is called asexual reproduction. With two (or more) parents, it is called sexual
reproduction. An offspring’s genome (in this case a set of policy parameters) is randomly composed of parts of
its parents’ genomes.
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power won't make the robot move any faster. And it’s generally too expensive to train
1,000 robots in parallel. In short, training is hard and slow in the real world, so you
generally need a simulated environment at least to bootstrap training.

OpenAl gym® is a toolkit that provides a wide variety of simulated environments
(Atari games, board games, 2D and 3D physical simulations, and so on), so you can
train agents, compare them, or develop new RL algorithms.

Let’s install OpenAI gym. For a minimal OpenAI gym installation, simply use pip:
$ pip3 install --upgrade gym
Next open up a Python shell or a Jupyter notebook and create your first environment:

>>> import

>>> env = gym.make("CartPole-v0")

[2016-10-14 16:03:23,199] Making new env: MsPacman-v0@

>>> obs = env.reset()

>>> obs

array([-0.03799846, -0.03288115, 0.02337094, 0.00720711])
>>> env.render()

The make() function creates an environment, in this case a CartPole environment.
This is a 2D simulation in which a cart can be accelerated left or right in order to bal-
ance a pole placed on top of it (see Figure 16-4). After the environment is created, we
must initialize it using the reset() method. This returns the first observation. Obser-
vations depend on the type of environment. For the CartPole environment, each
observation is a 1D NumPy array containing four floats: these floats represent the
cart’s horizontal position (0.0 = center), its velocity, the angle of the pole (0.0 = verti-
cal), and its angular velocity. Finally, the render () method displays the environment
as shown in Figure 16-4.

Figure 16-4. The CartPole environment

8 OpenAl is a nonprofit artificial intelligence research company, funded in part by Elon Musk. Its stated goal is
to promote and develop friendly Als that will benefit humanity (rather than exterminate it).
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If you want render () to return the rendered image as a NumPy array, you can set the

mode parameter to rgb_array (note that other environments may support different
modes):

>>> img = env.render(mode="rgb_array")
>>> img.shape # height, width, channels (3=RGB)
(400, 600, 3)

Unfortunately, the CartPole (and a few other environments) ren-
ders the image to the screen even if you set the mode to
"rgb_array". The only way to avoid this is to use a fake X server
such as Xvfb or Xdummy. For example, you can install Xvfb and
start Python using the following command: xvfb-run -s "-
screen 0 1400x900x24" python. Or use the xvfbwrapper package.

Let’s ask the environment what actions are possible:

>>> env.action_space
Discrete(2)

Discrete(2) means that the possible actions are integers 0 and 1, which represent
accelerating left (0) or right (1). Other environments may have more discrete actions,
or other kinds of actions (e.g., continuous). Since the pole is leaning toward the right,
let’s accelerate the cart toward the right:

>>> action = 1 # accelerate right
>>> obs, reward, done, info = env.step(action)
>>> obs

array([-0.03865608, 0.16189797, 0.02351508, -0.27801135])
>>> reward

1.0

>>> done

False

>>> info

(3

The step() method executes the given action and returns four values:

obs
This is the new observation. The cart is now moving toward the right (obs[1]>0).
The pole is still tilted toward the right (obs[2]>0), but its angular velocity is now
negative (obs[3]<0), so it will likely be tilted toward the left after the next step.

reward

In this environment, you get a reward of 1.0 at every step, no matter what you do,
so the goal is to keep running as long as possible.
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done
This value will be True when the episode is over. This will happen when the pole
tilts too much. After that, the environment must be reset before it can be used
again.

info
This dictionary may provide extra debug information in other environments.
This data should not be used for training (it would be cheating).

Let’s hardcode a simple policy that accelerates left when the pole is leaning toward the
left and accelerates right when the pole is leaning toward the right. We will run this
policy to see the average rewards it gets over 500 episodes:

def basic_policy(obs):
angle = obs[2]
return 0 if angle < 0 else 1

totals = []
for episode in range(500):
episode_rewards = 0
obs = env.reset()
for step in range(1000): # 1000 steps max, we don't want to run forever
action = basic_policy(obs)
obs, reward, done, info = env.step(action)
episode_rewards += reward
if done:
break
totals.append(episode_rewards)

This code is hopefully self-explanatory. Lets look at the result:

>>> import as
>>> np.mean(totals), np.std(totals), np.min(totals), np.max(totals)
(42.125999999999998, 9.1237121830974033, 24.0, 68.0)

Even with 500 tries, this policy never managed to keep the pole upright for more than
68 consecutive steps. Not great. If you look at the simulation in the Jupyter note-
books, you will see that the cart oscillates left and right more and more strongly until
the pole tilts too much. Let’s see if a neural network can come up with a better policy.

Neural Network Policies

Let’s create a neural network policy. Just like the policy we hardcoded earlier, this
neural network will take an observation as input, and it will output the action to be
executed. More precisely, it will estimate a probability for each action, and then we
will select an action randomly according to the estimated probabilities (see
Figure 16-5). In the case of the CartPole environment, there are just two possible
actions (left or right), so we only need one output neuron. It will output the probabil-
ity p of action 0 (left), and of course the probability of action 1 (right) will be 1 - p.
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For example, if it outputs 0.7, then we will pick action 0 with 70% probability, and
action 1 with 30% probability.

@® Action

Multinomial sampling

Probability of action 0O (left)

Hidden

1 X, X3 X, Observations

Figure 16-5. Neural network policy

You may wonder why we are picking a random action based on the probability given
by the neural network, rather than just picking the action with the highest score. This
approach lets the agent find the right balance between exploring new actions and
exploiting the actions that are known to work well. Here’s an analogy: suppose you go
to a restaurant for the first time, and all the dishes look equally appealing so you ran-
domly pick one. If it turns out to be good, you can increase the probability to order it
next time, but you shouldn’t increase that probability up to 100%, or else you will
never try out the other dishes, some of which may be even better than the one you
tried.

Also note that in this particular environment, the past actions and observations can
safely be ignored, since each observation contains the environment’s full state. If there
were some hidden state, then you may need to consider past actions and observations
as well. For example, if the environment only revealed the position of the cart but not
its velocity, you would have to consider not only the current observation but also the
previous observation in order to estimate the current velocity. Another example is
when the observations are noisy; in that case, you generally want to use the past few
observations to estimate the most likely current state. The CartPole problem is thus as
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simple as can be; the observations are noise-free and they contain the environment’s
full state.

Here is the code to build this neural network policy using TensorFlow:

import as
from import fully_connected

# 1. Specify the neural network architecture

n_inputs = 4 # == env.observation_space.shape[0]

n_hidden = 4 # it's a simple task, we don't need more hidden neurons
n_outputs = 1 # only outputs the probability of accelerating left
initializer = tf.contrib.layers.variance_scaling_initializer()

# 2. Build the neural network

X = tf.placeholder(tf.float32, shape=[None, n_inputs])

hidden = fully_connected(X, n_hidden, activation_fn=tf.nn.elu,
weights_initializer=initializer)

logits = fully_connected(hidden, n_outputs, activation_fn=None,
weights_initializer=initializer)

outputs = tf.nn.sigmoid(logits)

# 3. Select a random action based on the estimated probabilities
p_left_and_right = tf.concat(axis=1, values=[outputs, 1 - outputs])
action = tf.multinomial(tf.log(p_left_and_right), num_samples=1)

init = tf.global_variables_initializer()

Let’s go through this code:

1.

After the imports, we define the neural network architecture. The number of
inputs is the size of the observation space (which in the case of the CartPole is
four), we just have four hidden units and no need for more, and we have just one
output probability (the probability of going left).

. Next we build the neural network. In this example, it’s a vanilla Multi-Layer Per-

ceptron, with a single output. Note that the output layer uses the logistic (sig-
moid) activation function in order to output a probability from 0.0 to 1.0. If there
were more than two possible actions, there would be one output neuron per
action, and you would use the softmax activation function instead.

. Lastly, we call the multinomial() function to pick a random action. This func-

tion independently samples one (or more) integers, given the log probability of
each integer. For example, if you call it with the array [np.log(0.5),
np.log(0.2), np.log(0.3)] and with num_samples=5, then it will output five
integers, each of which will have a 50% probability of being 0, 20% of being 1,
and 30% of being 2. In our case we just need one integer representing the action
to take. Since the outputs tensor only contains the probability of going left, we
must first concatenate 1-outputs to it to have a tensor containing the probability
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of both left and right actions. Note that if there were more than two possible
actions, the neural network would have to output one probability per action so
you would not need the concatenation step.

Okay, we now have a neural network policy that will take observations and output
actions. But how do we train it?

Evaluating Actions: The Credit Assignment Problem

If we knew what the best action was at each step, we could train the neural network as
usual, by minimizing the cross entropy between the estimated probability and the tar-
get probability. It would just be regular supervised learning. However, in Reinforce-
ment Learning the only guidance the agent gets is through rewards, and rewards are
typically sparse and delayed. For example, if the agent manages to balance the pole
for 100 steps, how can it know which of the 100 actions it took were good, and which
of them were bad? All it knows is that the pole fell after the last action, but surely this
last action is not entirely responsible. This is called the credit assignment problem:
when the agent gets a reward, it is hard for it to know which actions should get credi-
ted (or blamed) for it. Think of a dog that gets rewarded hours after it behaved well;
will it understand what it is rewarded for?

To tackle this problem, a common strategy is to evaluate an action based on the sum
of all the rewards that come after it, usually applying a discount rate r at each step. For
example (see Figure 16-6), if an agent decides to go right three times in a row and gets
+10 reward after the first step, 0 after the second step, and finally —-50 after the third
step, then assuming we use a discount rate r = 0.8, the first action will have a total
score of 10 + r x 0 + r* x (=50) = -22. If the discount rate is close to 0, then future
rewards won't count for much compared to immediate rewards. Conversely, if the
discount rate is close to 1, then rewards far into the future will count almost as much
as immediate rewards. Typical discount rates are 0.95 or 0.99. With a discount rate of
0.95, rewards 13 steps into the future count roughly for half as much as immediate
rewards (since 0.95" = 0.5), while with a discount rate of 0.99, rewards 69 steps into
the future count for half as much as immediate rewards. In the CartPole environ-
ment, actions have fairly short-term effects, so choosing a discount rate of 0.95 seems
reasonable.
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Figure 16-6. Discounted rewards

Of course, a good action may be followed by several bad actions that cause the pole to
fall quickly, resulting in the good action getting a low score (similarly, a good actor
may sometimes star in a terrible movie). However, if we play the game enough times,
on average good actions will get a better score than bad ones. So, to get fairly reliable
action scores, we must run many episodes and normalize all the action scores (by
subtracting the mean and dividing by the standard deviation). After that, we can rea-
sonably assume that actions with a negative score were bad while actions with a posi-
tive score were good. Perfect—now that we have a way to evaluate each action, we are
ready to train our first agent using policy gradients. Let’s see how.

Policy Gradients

As discussed earlier, PG algorithms optimize the parameters of a policy by following
the gradients toward higher rewards. One popular class of PG algorithms, called
REINFORCE algorithms, was introduced back in 1992° by Ronald Williams. Here is
one common variant:

1. First, let the neural network policy play the game several times and at each step
compute the gradients that would make the chosen action even more likely, but
don’t apply these gradients yet.

9 “Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning,” R. Williams
(1992).
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2. Once you have run several episodes, compute each action’s score (using the
method described in the previous paragraph).

3. If an action’s score is positive, it means that the action was good and you want to
apply the gradients computed earlier to make the action even more likely to be
chosen in the future. However, if the score is negative, it means the action was
bad and you want to apply the opposite gradients to make this action slightly less
likely in the future. The solution is simply to multiply each gradient vector by the
corresponding action’s score.

4. Finally, compute the mean of all the resulting gradient vectors, and use it to per-
form a Gradient Descent step.

Let’s implement this algorithm using TensorFlow. We will train the neural network
policy we built earlier so that it learns to balance the pole on the cart. Let’s start by
completing the construction phase we coded earlier to add the target probability, the
cost function, and the training operation. Since we are acting as though the chosen
action is the best possible action, the target probability must be 1.0 if the chosen
action is action 0 (left) and 0.0 if it is action 1 (right):

y = 1. - tf.to_float(action)

Now that we have a target probability, we can define the cost function (cross entropy)
and compute the gradients:

learning_rate = 0.01

cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(
labels=y, logits=logits)

optimizer = tf.train.AdamOptimizer(learning_rate)

grads_and_vars = optimizer.compute_gradients(cross_entropy)

Note that we are calling the optimizer’s compute_gradients() method instead of the
minimize() method. This is because we want to tweak the gradients before we apply
them.” The compute_gradients() method returns a list of gradient vector/variable
pairs (one pair per trainable variable). Let’s put all the gradients in a list, to make it
more convenient to obtain their values:

gradients = [grad for grad, variable in grads_and_vars]

Okay, now comes the tricky part. During the execution phase, the algorithm will run
the policy and at each step it will evaluate these gradient tensors and store their val-
ues. After a number of episodes it will tweak these gradients as explained earlier (i.e.,
multiply them by the action scores and normalize them) and compute the mean of
the tweaked gradients. Next, it will need to feed the resulting gradients back to the

10 We already did something similar in Chapter 11 when we discussed Gradient Clipping: we first computed the
gradients, then we clipped them, and finally we applied the clipped gradients.
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optimizer so that it can perform an optimization step. This means we need one place-
holder per gradient vector. Moreover, we must create the operation that will apply the
updated gradients. For this we will call the optimizer’s apply_gradients() function,
which takes a list of gradient vector/variable pairs. Instead of giving it the original
gradient vectors, we will give it a list containing the updated gradients (i.e., the ones
fed through the gradient placeholders):

gradient_placeholders = []

grads_and_vars_feed = []

for grad, variable in grads_and_vars:
gradient_placeholder = tf.placeholder(tf.float32, shape=grad.get_shape())
gradient_placeholders.append(gradient_placeholder)
grads_and_vars_feed.append((gradient_placeholder, variable))

training_op = optimizer.apply_gradients(grads_and_vars_feed)
Let’s step back and take a look at the full construction phase:

n_inputs = 4
n_hidden = 4
n_outputs = 1
initializer = tf.contrib.layers.variance_scaling_initializer()
learning_rate = 0.01

X = tf.placeholder(tf.float32, shape=[None, n_inputs])

hidden = fully_connected(X, n_hidden, activation_fn=tf.nn.elu,
weights_initializer=initializer)

logits = fully_connected(hidden, n_outputs, activation_fn=None,
weights_initializer=initializer)

outputs = tf.nn.sigmoid(logits)

p_left_and_right = tf.concat(axis=1, values=[outputs, 1 - outputs])

action = tf.multinomial(tf.log(p_left_and_right), num_samples=1)

y = 1. - tf.to_float(action)
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(
labels=y, logits=logits)

optimizer = tf.train.AdamOptimizer(learning_rate)

grads_and_vars = optimizer.compute_gradients(cross_entropy)

gradients = [grad for grad, variable in grads_and_vars]

gradient_placeholders = []

grads_and_vars_feed = []

for grad, variable in grads_and_vars:
gradient_placeholder = tf.placeholder(tf.float32, shape=grad.get_shape())
gradient_placeholders.append(gradient_placeholder)
grads_and_vars_feed.append((gradient_placeholder, variable))

training_op = optimizer.apply_gradients(grads_and_vars_feed)

init = tf.global_variables_initializer()
saver = tf.train.Saver()
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On to the execution phase! We will need a couple of functions to compute the total
discounted rewards, given the raw rewards, and to normalize the results across multi-
ple episodes:

def discount_rewards(rewards, discount_rate):
discounted_rewards = np.empty(len(rewards))
cumulative_rewards = 0
for step in reversed(range(len(rewards))):
cumulative_rewards = rewards[step] + cumulative_rewards * discount_rate
discounted_rewards[step] = cumulative_rewards
return discounted_rewards

def discount_and_normalize_rewards(all_rewards, discount_rate):
all_discounted_rewards = [discount_rewards(rewards)
for rewards in all_rewards]
flat_rewards = np.concatenate(all_discounted_rewards)
reward_mean = flat_rewards.mean()
reward_std = flat_rewards.std()
return [(discounted_rewards - reward_mean)/reward_std
for discounted_rewards in all_discounted_rewards]

Let’s check that this works:

>>> discount_rewards([10, 0, -50], discount_rate=0.8)
array([-22., -40., -50.])
>>> discount_and_normalize_rewards([[10, 0, -50], [10, 20]], discount_rate=0.8)
[array([-0.28435071, -0.86597718, -1.18910299]),
array([ 1.26665318, 1.0727777 ])]

The call to discount_rewards() returns exactly what we expect (see Figure 16-6).
You can verify that the function discount_and_normalize_rewards() does indeed
return the normalized scores for each action in both episodes. Notice that the first
episode was much worse than the second, so its normalized scores are all negative; all
actions from the first episode would be considered bad, and conversely all actions
from the second episode would be considered good.

We now have all we need to train the policy:

n_iterations = 250 # number of training iterations

n_max_steps = 1000 # max steps per episode

n_games_per_update = 10 # train the policy every 10 episodes
save_iterations = 10 # save the model every 10 training iterations

discount_rate = 0.95

with tf.Session() as sess:

init.run()
for iteration in range(n_1iterations):
all_rewards = [] # all sequences of raw rewards for each episode

all_gradients = [] # gradients saved at each step of each episode
for game in range(n_games_per_update):
current_rewards = [] # all raw rewards from the current episode
current_gradients = [] # all gradients from the current episode
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obs = env.reset()
for step in range(n_max_steps):
action_val, gradients_val = sess.run(
[action, gradients],
feed_dict={X: obs.reshape(1l, n_inputs)}) # one obs
obs, reward, done, info = env.step(action_val[0][0])
current_rewards.append(reward)
current_gradients.append(gradients_val)
if done:
break
all_rewards.append(current_rewards)
all_gradients.append(current_gradients)

# At this point we have run the policy for 10 episodes, and we are
# ready for a policy update using the algorithm described earlier.
all_rewards = discount_and_normalize_rewards(all_rewards)
feed_dict = {}
for var_index, grad_placeholder in enumerate(gradient_placeholders):
# multiply the gradients by the action scores, and compute the mean
mean_gradients = np.mean(
[reward * all_gradients[game_index][step][var_index]
for game_1index, rewards in enumerate(all_rewards)
for step, reward in enumerate(rewards)],
axis=0)
feed_dict[grad_placeholder] = mean_gradients
sess.run(training_op, feed_dict=feed_dict)
if iteration % save_iterations == 0:
saver.save(sess, "./my_policy net_pg.ckpt")

Each training iteration starts by running the policy for 10 episodes (with maximum
1,000 steps per episode, to avoid running forever). At each step, we also compute the
gradients, pretending that the chosen action was the best. After these 10 episodes
have been run, we compute the action scores using the discount_and_normal
ize_rewards() function; we go through each trainable variable, across all episodes
and all steps, to multiply each gradient vector by its corresponding action score; and
we compute the mean of the resulting gradients. Finally, we run the training opera-
tion, feeding it these mean gradients (one per trainable variable). We also save the
model every 10 training operations.

And were done! This code will train the neural network policy, and it will success-
fully learn to balance the pole on the cart (you can try it out in the Jupyter note-
books). Note that there are actually two ways the agent can lose the game: either the
pole can tilt too much, or the cart can go completely off the screen. With 250 training
iterations, the policy learns to balance the pole quite well, but it is not yet good
enough at avoiding going off the screen. A few hundred more training iterations will
fix that.
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Researchers try to find algorithms that work well even when the
agent initially knows nothing about the environment. However,
unless you are writing a paper, you should inject as much prior
knowledge as possible into the agent, as it will speed up training
dramatically. For example, you could add negative rewards propor-
tional to the distance from the center of the screen, and to the pole’s
angle. Also, if you already have a reasonably good policy (e.g.,
hardcoded), you may want to train the neural network to imitate it
before using policy gradients to improve it.

Despite its relative simplicity, this algorithm is quite powerful. You can use it to tackle
much harder problems than balancing a pole on a cart. In fact, AlphaGo was based
on a similar PG algorithm (plus Monte Carlo Tree Search, which is beyond the scope
of this book).

We will now look at another popular family of algorithms. Whereas PG algorithms
directly try to optimize the policy to increase rewards, the algorithms we will look at
now are less direct: the agent learns to estimate the expected sum of discounted future
rewards for each state, or the expected sum of discounted future rewards for each
action in each state, then uses this knowledge to decide how to act. To understand
these algorithms, we must first introduce Markov decision processes (MDP).

Markov Decision Processes

In the early 20" century, the mathematician Andrey Markov studied stochastic pro-
cesses with no memory, called Markov chains. Such a process has a fixed number of
states, and it randomly evolves from one state to another at each step. The probability
for it to evolve from a state s to a state s’ is fixed, and it depends only on the pair (s,s'),
not on past states (the system has no memory).

Figure 16-7 shows an example of a Markov chain with four states. Suppose that the
process starts in state s,, and there is a 70% chance that it will remain in that state at
the next step. Eventually it is bound to leave that state and never come back since no
other state points back to s,. If it goes to state s,, it will then most likely go to state s,
(90% probability), then immediately back to state s, (with 100% probability). It may
alternate a number of times between these two states, but eventually it will fall into
state s, and remain there forever (this is a terminal state). Markov chains can have
very different dynamics, and they are heavily used in thermodynamics, chemistry,
statistics, and much more.
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Figure 16-7. Example of a Markov chain

Markov decision processes were first described in the 1950s by Richard Bellman."
They resemble Markov chains but with a twist: at each step, an agent can choose one
of several possible actions, and the transition probabilities depend on the chosen
action. Moreover, some state transitions return some reward (positive or negative),
and the agent’s goal is to find a policy that will maximize rewards over time.

For example, the MDP represented in Figure 16-8 has three states and up to three
possible discrete actions at each step. If it starts in state s, the agent can choose
between actions a,, a,, or a,. If it chooses action a, it just remains in state s, with cer-
tainty, and without any reward. It can thus decide to stay there forever if it wants. But
if it chooses action a,, it has a 70% probability of gaining a reward of +10, and
remaining in state s,. It can then try again and again to gain as much reward as possi-
ble. But at one point it is going to end up instead in state s,. In state s, it has only two
possible actions: a, or a,. It can choose to stay put by repeatedly choosing action a,, or
it can choose to move on to state s, and get a negative reward of -50 (ouch). In state s,
it has no other choice than to take action a,, which will most likely lead it back to
state s,, gaining a reward of +40 on the way. You get the picture. By looking at this
MDP, can you guess which strategy will gain the most reward over time? In state s, it
is clear that action g, is the best option, and in state s, the agent has no choice but to
take action a,, but in state s, it is not obvious whether the agent should stay put (a,) or
go through the fire (a,).

11 “A Markovian Decision Process,” R. Bellman (1957).
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Figure 16-8. Example of a Markov decision process

Bellman found a way to estimate the optimal state value of any state s, noted V*(s),
which is the sum of all discounted future rewards the agent can expect on average
after it reaches a state s, assuming it acts optimally. He showed that if the agent acts
optimally, then the Bellman Optimality Equation applies (see Equation 16-1). This
recursive equation says that if the agent acts optimally, then the optimal value of the
current state is equal to the reward it will get on average after taking one optimal
action, plus the expected optimal value of all possible next states that this action can
lead to.

Equation 16-1. Bellman Optimality Equation
V*(s) = max, X, T(s,a,5)[R(s,a,5') +y. V*(s)] for all s

o T(s, a, §’) is the transition probability from state s to state s/, given that the agent
chose action a.

« R(s, a, ¢) is the reward that the agent gets when it goes from state s to state §/,
given that the agent chose action a.

« yis the discount rate.

This equation leads directly to an algorithm that can precisely estimate the optimal
state value of every possible state: you first initialize all the state value estimates to
zero, and then you iteratively update them using the Value Iteration algorithm (see
Equation 16-2). A remarkable result is that, given enough time, these estimates are
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guaranteed to converge to the optimal state values, corresponding to the optimal pol-
icy.

Equation 16-2. Value Iteration algorithm
Vi q(8) « max ;T(s, a,s) [R(s, a,s)+y. Vk(s’)] for all s

o Vi(s) is the estimated value of state s at the k™ iteration of the algorithm.

This algorithm is an example of Dynamic Programming, which
breaks down a complex problem (in this case estimating a poten-
tially infinite sum of discounted future rewards) into tractable sub-
problems that can be tackled iteratively (in this case finding the
action that maximizes the average reward plus the discounted next
state value).

Knowing the optimal state values can be useful, in particular to evaluate a policy, but
it does not tell the agent explicitly what to do. Luckily, Bellman found a very similar
algorithm to estimate the optimal state-action values, generally called Q-Values. The
optimal Q-Value of the state-action pair (s,a), noted Q*(s,a), is the sum of discounted
future rewards the agent can expect on average after it reaches the state s and chooses
action a, but before it sees the outcome of this action, assuming it acts optimally after
that action.

Here is how it works: once again, you start by initializing all the Q-Value estimates to
zero, then you update them using the Q-Value Iteration algorithm (see Equation
16-3).

Equation 16-3. Q-Value Iteration algorithm

Qp 4 1(s5a) « ZT(S, a,s) [R(s, a,s)+y. max Qs a’)] for all (s, a)

Once you have the optimal Q-Values, defining the optimal policy, noted 7*(s), is triv-
ial: when the agent is in state s, it should choose the action with the highest Q-Value
for that state: 7*(s) = argmax Q*(s, a).

a

Let’s apply this algorithm to the MDP represented in Figure 16-8. First, we need to
define the MDP:

nan=np.nan # represents impossible actions
T = np.array([ # shape=[s, a, s']
[[0.7, 0.3, 0.0], [1.0, 0.0, 0.0], [0.8, 0.2, 0.0]],
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[[0.0, 1.0, 0.0], [nan, nan, nan], [0.0, 0.0, 1.0]],
[[nan, nan, nan], [0.8, 0.1, 0.1], [nan, nan, nan]],
D
R = np.array([ # shape=[s, a, s']
[[16., 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[[16., 0.0, 0.0], [nan, nan, nan], [0.0, 0.0, -50.]],
[[nan, nan, nan], [40., 0.0, 0.0], [nan, nan, nan]],
D
possible_actions = [[0, 1, 2], [0, 2], [1]1]

Now let’s run the Q-Value Iteration algorithm:

Q = np.full((3, 3), -np.inf) # -inf for impossible actions
for state, actions in enumerate(possible_actions):
Q[state, actions] = 0.0 # Initial value = 0.0, for all possible actions

learning_rate = 0.01
discount_rate = 0.95
n_iterations = 100

for iteration in range(n_1iterations):
Q_prev = Q.copy()
for s in range(3):
for a in possible_actions[s]:
Q[s, a] = np.sum([
T[s, a, sp] * (R[s, a, sp] + discount_rate * np.max(Q_prev[sp]))
for sp in range(3)

D
The resulting Q-Values look like this:
>>> Q
array([[ 21.89498982, 20.80024033, 16.86353093],
[ 1.11669335, -inf,  1.17573546],
[ -inf, 53.86946068, -inf]])

>>> np.argmax(Q, axis=1) # optimal action for each state

array([0, 2, 1])
This gives us the optimal policy for this MDP, when using a discount rate of 0.95: in
state s, choose action a,, in state s, choose action a, (go through the fire!), and in state
s, choose action g, (the only possible action). Interestingly, if you reduce the discount
rate to 0.9, the optimal policy changes: in state s, the best action becomes a, (stay put;
don’t go through the fire). It makes sense because if you value the present much more
than the future, then the prospect of future rewards is not worth immediate pain.

Temporal Difference Learning and Q-Learning

Reinforcement Learning problems with discrete actions can often be modeled as
Markov decision processes, but the agent initially has no idea what the transition
probabilities are (it does not know T(s, a, s)), and it does not know what the rewards
are going to be either (it does not know R(s, g, §)). It must experience each state and
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each transition at least once to know the rewards, and it must experience them multi-
ple times if it is to have a reasonable estimate of the transition probabilities.

The Temporal Difference Learning (TD Learning) algorithm is very similar to the
Value Iteration algorithm, but tweaked to take into account the fact that the agent has
only partial knowledge of the MDP. In general we assume that the agent initially
knows only the possible states and actions, and nothing more. The agent uses an
exploration policy—for example, a purely random policy—to explore the MDP, and as
it progresses the TD Learning algorithm updates the estimates of the state values
based on the transitions and rewards that are actually observed (see Equation 16-4).

Equation 16-4. TD Learning algorithm
Vi 1(9) < (1 -V (s) + alr+y. Vk(s’))

o «is the learning rate (e.g., 0.01).

TD Learning has many similarities with Stochastic Gradient
Descent, in particular the fact that it handles one sample at a time.
Just like SGD, it can only truly converge if you gradually reduce the
learning rate (otherwise it will keep bouncing around the opti-
mum).

For each state s, this algorithm simply keeps track of a running average of the imme-
diate rewards the agent gets upon leaving that state, plus the rewards it expects to get
later (assuming it acts optimally).

Similarly, the Q-Learning algorithm is an adaptation of the Q-Value Iteration algo-
rithm to the situation where the transition probabilities and the rewards are initially
unknown (see Equation 16-5).

Equation 16-5. Q-Learning algorithm

Qy1(5a) « (1 - 0)Qy(s,a) +alr +y. max Qk(s’,a’))

For each state-action pair (s, a), this algorithm keeps track of a running average of the
rewards r the agent gets upon leaving the state s with action a, plus the rewards it
expects to get later. Since the target policy would act optimally, we take the maximum
of the Q-Value estimates for the next state.

Here is how Q-Learning can be implemented:

458 | Chapter 16: Reinforcement Learning



import as

learning_rate0® = 0.05
learning_rate_decay = 0.1
n_iterations = 20000

s = 0 # start in state 0

Q = np.full((3, 3), -np.inf) # -inf for impossible actions
for state, actions in enumerate(possible_actions):
Q[state, actions] = 0.0 # Initial value = 0.0, for all possible actions

for iteration in range(n_1iterations):
a = rnd.choice(possible_actions[s]) # choose an action (randomly)
sp = rnd.choice(range(3), p=T[s, al]) # pick next state using T[s, a]
reward = R[s, a, sp]
learning_rate = learning_rate® / (1 + iteration * learning_rate_decay)
Q[s, a] = learning_rate * Q[s, a] + (1 - learning_rate) * (
reward + discount_rate * np.max(Q[sp])

S = ip # move to next state
Given enough iterations, this algorithm will converge to the optimal Q-Values. This is
called an off-policy algorithm because the policy being trained is not the one being
executed. It is somewhat surprising that this algorithm is capable of learning the opti-
mal policy by just watching an agent act randomly (imagine learning to play golf
when your teacher is a drunken monkey). Can we do better?

Exploration Policies

Of course Q-Learning can work only if the exploration policy explores the MDP
thoroughly enough. Although a purely random policy is guaranteed to eventually
visit every state and every transition many times, it may take an extremely long time
to do so. Therefore, a better option is to use the e-greedy policy: at each step it acts
randomly with probability €, or greedily (choosing the action with the highest Q-
Value) with probability 1-e. The advantage of the e-greedy policy (compared to a
completely random policy) is that it will spend more and more time exploring the
interesting parts of the environment, as the Q-Value estimates get better and better,
while still spending some time visiting unknown regions of the MDP. It is quite com-
mon to start with a high value for € (e.g., 1.0) and then gradually reduce it (e.g., down
to 0.05).

Alternatively, rather than relying on chance for exploration, another approach is to
encourage the exploration policy to try actions that it has not tried much before. This
can be implemented as a bonus added to the Q-Value estimates, as shown in Equation
16-6.
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Equation 16-6. Q-Learning using an exploration function

Q(s,a) <« (1 - a)Q(s,a) + oc(r +y. max f(Q(s',a), N(s, a’)))

o N(s, a’) counts the number of times the action @’ was chosen in state s’.

 flg, n) is an exploration function, such as f(q, n) = q + K/(1 + n), where K is a
curiosity hyperparameter that measures how much the agent is attracted to to the
unknown.

Approximate Q-Learning

The main problem with Q-Learning is that it does not scale well to large (or even
medium) MDPs with many states and actions. Consider trying to use Q-Learning to
train an agent to play Ms. Pac-Man. There are over 250 pellets that Ms. Pac-Man can
eat, each of which can be present or absent (i.e., already eaten). So the number of pos-
sible states is greater than 2°° = 107 (and that’s considering the possible states only of
the pellets). This is way more than atoms in the observable universe, so there’s abso-
lutely no way you can keep track of an estimate for every single Q-Value.

The solution is to find a function that approximates the Q-Values using a manageable
number of parameters. This is called Approximate Q-Learning. For years it was rec-
ommended to use linear combinations of hand-crafted features extracted from the
state (e.g., distance of the closest ghosts, their directions, and so on) to estimate Q-
Values, but DeepMind showed that using deep neural networks can work much bet-
ter, especially for complex problems, and it does not require any feature engineering.
A DNN used to estimate Q-Values is called a deep Q-network (DQN), and using a
DQN for Approximate Q-Learning is called Deep Q-Learning.

In the rest of this chapter, we will use Deep Q-Learning to train an agent to play Ms.
Pac-Man, much like DeepMind did in 2013. The code can easily be tweaked to learn
to play the majority of Atari games quite well. It can achieve superhuman skill at most
action games, but it is not so good at games with long-running storylines.

Learning to Play Ms. Pac-Man Using Deep Q-Learning

Since we will be using an Atari environment, we must first install OpenAI gym’s Atari
dependencies. While were at it, we will also install dependencies for other OpenAl
gym environments that you may want to play with. On macOS, assuming you have
installed Homebrew, you need to run:

$ brew install cmake boost boost-python sdl2 swig wget
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On Ubuntu, type the following command (replacing python3 with python if you are
using Python 2):

$ apt-get install -y python3-numpy python3-dev cmake zliblg-dev libjpeg-dev\
xvfb libav-tools xorg-dev python3-opengl libboost-all-dev libsdl2-dev swig

Then install the extra Python modules:
$ pip3 install --upgrade 'gym[all]'
If everything went well, you should be able to create a Ms. Pac-Man environment:

>>> env = gym.make("MsPacman-v0")

>>> obs = env.reset()

>>> obs.shape # [height, width, channels]
(210, 160, 3)

>>> env.action_space

Discrete(9)

As you can see, there are nine discrete actions available, which correspond to the nine
possible positions of the joystick (left, right, up, down, center, upper left, and so on),
and the observations are simply screenshots of the Atari screen (see Figure 16-9, left),
represented as 3D NumPy arrays. These images are a bit large, so we will create a
small preprocessing function that will crop the image and shrink it down to 88 x 80
pixels, convert it to grayscale, and improve the contrast of Ms. Pac-Man. This will
reduce the amount of computations required by the DQN, and speed up training.

mspacman_color = np.array([210, 164, 74]).mean()

def preprocess_observation(obs):
img = obs[1:176:2, ::2] # crop and downsize
img = img.mean(axis=2) # to greyscale
img[img==mspacman_color] = 0 # improve contrast
img = (img - 128) / 128 - 1 # normalize from -1. to 1.
return img.reshape(88, 80, 1)

The result of preprocessing is shown in Figure 16-9 (right).
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Figure 16-9. Ms. Pac-Man observation, original (left) and after preprocessing (right)

Next, let’s create the DQN. It could just take a state-action pair (s,a) as input, and out-
put an estimate of the corresponding Q-Value Q(s,a), but since the actions are dis-
crete it is more convenient to use a neural network that takes only a state s as input
and outputs one Q-Value estimate per action. The DQN will be composed of three
convolutional layers, followed by two fully connected layers, including the output
layer (see Figure 16-10).

Output = Q-Values

*

Fully Connected
9 units

Fully Connected
512 units
Convolution
64, 3x3 +1(S)
Convolution
64, 4x4 +2(S)

Convolution
32, 8x8 +4(S)

shape
11x10x64

11x10%x64

22x20%32

88x80x%1

Input = State

Figure 16-10. Deep Q-network to play Ms. Pac-Man
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As we will see, the training algorithm we will use requires two DQNs with the same
architecture (but different parameters): one will be used to drive Ms. Pac-Man during
training (the actor), and the other will watch the actor and learn from its trials and
errors (the critic). At regular intervals we will copy the critic to the actor. Since we
need two identical DQNs, we will create a q_network() function to build them:

from import convolution2d, fully_connected

input_height = 88

input_width = 80

input_channels = 1

conv_n_maps = [32, 64, 64]

conv_kernel_sizes = [(8,8), (4,4), (3,3)]

conv_strides = [4, 2, 1]

conv_paddings = ["SAME"]*3

conv_activation = [tf.nn.relul*3

n_hidden_in = 64 * 11 * 10 # conv3 has 64 maps of 11x10 each
n_hidden = 512

hidden_activation = tf.nn.relu

n_outputs = env.action_space.n # 9 discrete actions are available
initializer = tf.contrib.layers.variance_scaling_initializer()

def q_network(X_state, scope):
prev_layer = X_state
conv_layers = []
with tf.variable_scope(scope) as scope:
for n_maps, kernel_size, stride, padding, activation in zip(
conv_n_maps, conv_kernel_sizes, conv_strides,
conv_paddings, conv_activation):
prev_layer = convolution2d(
prev_layer, num_outputs=n_maps, kernel_size=kernel_size,
stride=stride, padding=padding, activation_fn=activation,
weights_initializer=initializer)
conv_layers.append(prev_layer)
last_conv_layer_flat = tf.reshape(prev_layer, shape=[-1, n_hidden_1in])
hidden = fully_connected(
last_conv_layer_flat, n_hidden, activation_fn=hidden_activation,
weights_initializer=initializer)
outputs = fully_connected(
hidden, n_outputs, activation_fn=None,
weights_initializer=initializer)
trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
scope=scope.name)
trainable_vars_by name = {var.name[len(scope.name):]: var
for var in trainable_vars}
return outputs, trainable_vars_by name

The first part of this code defines the hyperparameters of the DQN architecture.
Then the q_network() function creates the DQN, taking the environments state
X_state as input, and the name of the variable scope. Note that we will just use one
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observation to represent the environment’s state since there’s almost no hidden state
(except for blinking objects and the ghosts’ directions).

The trainable_vars_by_name dictionary gathers all the trainable variables of this
DQN. It will be useful in a minute when we create operations to copy the critic DQN
to the actor DQN. The keys of the dictionary are the names of the variables, stripping
the part of the prefix that just corresponds to the scope’s name. It looks like this:

>>> trainable_vars_by_name

{'/Conv/biases:0': <tensorflow.python.ops.variables.Variable at 0x121cf7b50>,
'/Conv/weights:0': <tensorflow.python.ops.variables.Variable...>,
'/Conv_1/biases:0': <tensorflow.python.ops.variables.Variable...>,
'/Conv_1/weights:0': <tensorflow.python.ops.variables.variable...>,
'/Conv_2/biases:0': <tensorflow.python.ops.variables.Variable...>,
'/Conv_2/weights:0': <tensorflow.python.ops.variables.variable...>,
'/fully_connected/biases:0': <tensorflow.python.ops.variables.Variable...>,
'/fully_connected/weights:0': <tensorflow.python.ops.variables.variable...>,
'/fully_connected_1/biases:0': <tensorflow.python.ops.variables.Variable...>,
'/fully_connected_1/weights:0': <tensorflow.python.ops.variables.Variable...>}

Now let’s create the input placeholder, the two DQNs, and the operation to copy the
critic DQN to the actor DQN:

X_state = tf.placeholder(tf.float32, shape=[None, input_height, input_width,
input_channels])

actor_g_values, actor_vars = q_network(X_state, scope="g_networks/actor")

critic_q_values, critic_vars = q_network(X_state, scope="q_networks/critic")

copy_ops = [actor_var.assign(critic_vars[var_name])
for var_name, actor_var in actor_vars.items()]

copy_critic_to_actor = tf.group(*copy_ops)
Let’s step back for a second: we now have two DQNs that are both capable of taking
an environment state (i.e., a preprocessed observation) as input and outputting an
estimated Q-Value for each possible action in that state. Plus we have an operation
called copy_critic_to_actor to copy all the trainable variables of the critic DQN to
the actor DQN. We use TensorFlow’s tf.group() function to group all the assign-
ment operations into a single convenient operation.

The actor DQN can be used to play Ms. Pac-Man (initially very badly). As discussed
earlier, you want it to explore the game thoroughly enough, so you generally want to
combine it with an e-greedy policy or another exploration strategy.

But what about the critic DQN? How will it learn to play the game? The short answer
is that it will try to make its Q-Value predictions match the Q-Values estimated by the
actor through its experience of the game. Specifically, we will let the actor play for a
while, storing all its experiences in a replay memory. Each memory will be a 5-tuple
(state, action, next state, reward, continue), where the “continue” item will be equal to
0.0 when the game is over, or 1.0 otherwise. Next, at regular intervals we will sample a
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batch of memories from the replay memory, and we will estimate the Q-Values from
these memories. Finally, we will train the critic DQN to predict these Q-Values using
regular supervised learning techniques. Once every few training iterations, we will
copy the critic DQN to the actor DQN. And that’s it! Equation 16-7 shows the cost
function used to train the critic DQN:

Equation 16-7. Deep Q-Learning cost function
- Q¢ 0,
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o 59, a9 ¥ and s’ are respectively the state, action, reward, and next state of the
i" memory sampled from the replay memory.

o m is the size of the memory batch.

e 0. cand 8

o Q(s9,a9,0,,;:) is the critic DQN’s prediction of the i memorized state-action’s Q-
Value.

¢ Q'Y d, 0, is the actor DQN’s prediction of the Q-Value it can expect from
the next state '@ if it chooses action a’.

itic tor are the critic and the actor’s parameters.

o y is the target Q-Value for the i memory. Note that it is equal to the reward
actually observed by the actor, plus the actor’s prediction of what future rewards it
should expect if it were to play optimally (as far as it knows).

o J(0.) is the cost function used to train the critic DQN. As you can see, it is just
the Mean Squared Error between the target Q-Values y'” as estimated by the actor
DQN, and the critic DQN’s predictions of these Q-Values.

The replay memory is optional, but highly recommended. Without
it, you would train the critic DQN using consecutive experiences
that may be very correlated. This would introduce a lot of bias and
slow down the training algorithm’s convergence. By using a replay
memory, we ensure that the memories fed to the training algorithm
can be fairly uncorrelated.

Let’s add the critic DQN’s training operations. First, we need to be able to compute its
predicted Q-Values for each state-action in the memory batch. Since the DQN out-
puts one Q-Value for every possible action, we need to keep only the Q-Value that
corresponds to the action that was actually chosen in this memory. For this, we will
convert the action to a one-hot vector (recall that this is a vector full of 0s except for a
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1 at the i index), and multiply it by the Q-Values: this will zero out all Q-Values
except for the one corresponding to the memorized action. Then just sum over the
first axis to obtain only the desired Q-Value prediction for each memory.

X_action = tf.placeholder(tf.int32, shape=[None])
q_value = tf.reduce_sum(critic_q_values * tf.one_hot(X_action, n_outputs),
axis=1, keep_dims=True)

Next let's add the training operations, assuming the target Q-Values will be fed
through a placeholder. We also create a nontrainable variable called global_step.

The optimizer’s minimize() operation will take care of incrementing it. Plus we cre-
ate the usual init operation and a Saver.

y = tf.placeholder(tf.float32, shape=[None, 1])

cost = tf.reduce_mean(tf.square(y - q_value))

global_step = tf.variable(®, trainable=False, name='global _step')
optimizer = tf.train.AdamOptimizer(learning_rate)

training_op = optimizer.minimize(cost, global_step=global_step)

init = tf.global_variables_initializer()
saver = tf.train.Saver()

That’s it for the construction phase. Before we look at the execution phase, we will
need a couple of tools. First, let’s start by implementing the replay memory. We will
use a deque list since it is very efficient at pushing items to the queue and popping
them out from the end of the list when the maximum memory size is reached. We
will also write a small function to randomly sample a batch of experiences from the
replay memory:

from import deque

replay_memory_size = 10000
replay_memory = deque([], maxlen=replay_memory_size)

def sample_memories(batch_size):
indices = rnd.permutation(len(replay_memory))[:batch_size]
cols = [[1, [1, [1, [], [1] # state, action, reward, next_state, continue
for idx in indices:
memory = replay_memory[idx]
for col, value in zip(cols, memory):
col.append(value)
cols = [np.array(col) for col in cols]
return (cols[0], cols[1], cols[2].reshape(-1, 1), cols[3],
cols[4].reshape(-1, 1))

Next, we will need the actor to explore the game. We will use the e-greedy policy, and
gradually decrease € from 1.0 to 0.05, in 50,000 training steps:

eps_min = 0.05
eps_max = 1.0
eps_decay_steps = 50000
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def epsilon_greedy(q_values, step):
epsilon = max(eps_min, eps_max - (eps_max-eps_min) * step/eps_decay_steps)
if rnd.rand() < epsilon:
return rnd.randint(n_outputs) # random action
else:
return np.argmax(q_values) # optimal action

That’s it! We have all we need to start training. The execution phase does not contain
anything too complex, but it is a bit long, so take a deep breath. Ready? Let’s go! First,
let’s initialize a few variables:

n_steps = 100000 # total number of training steps

training_start = 1000 # start training after 1,000 game iterations
training_1interval = 3 # run a training step every 3 game iterations
save_steps = 50 # save the model every 50 training steps

copy_steps = 25 # copy the critic to the actor every 25 training steps
discount_rate = 0.95

skip_start = 90 # skip the start of every game (it's just waiting time)
batch_size = 50

iteration = 0 # game iterations

checkpoint_path = "./my_dgn.ckpt"

done = True # env needs to be reset

Next, let’s open the session and run the main training loop:

with tf.Session() as sess:
if os.path.isfile(checkpoint_path):
saver.restore(sess, checkpoint_path)
else:
init.run()
while True:
step = global_step.eval()
if step >= n_steps:
break
iteration += 1
if done: # game over, start again
obs = env.reset()
for skip in range(skip_start): # skip the start of each game
obs, reward, done, info = env.step(0)
state = preprocess_observation(obs)

# Actor evaluates what to do
q_values = actor_q_values.eval(feed_dict={X_state: [state]})
action = epsilon_greedy(q_values, step)

# Actor plays
obs, reward, done, info = env.step(action)
next_state = preprocess_observation(obs)

# Let's memorize what just happened
replay_memory.append((state, action, reward, next_state, 1.0 - done))
state = next_state
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if iteration < training_start or iteration % training_interval != 0:
continue

# Critic learns
X_state_val, X_action_val, rewards, X_next_state_val, continues = (

sample_memories(batch_size))
next_q_values = actor_q_values.eval(

feed_dict={X_state: X_next_state_val})
max_next_q_values = np.max(next_q_values, axis=1, keepdims=True)
y_val = rewards + continues * discount_rate * max_next_qg_values
training_op.run(feed_dict={X_state: X_state_val,

X_action: X_action_val, y: y_val})

# Regularly copy critic to actor
if step % copy_steps == 0:
copy_critic_to_actor.run()

# And save regularly
if step % save_steps ==
saver.save(sess, checkpoint_path)

We start by restoring the models if a checkpoint file exists, or else we just initialize the
variables normally. Then the main loop starts, where iteration counts the total
number of game steps we have gone through since the program started, and step
counts the total number of training steps since training started (if a checkpoint is
restored, the global step is restored as well). Then the code resets the game (and skips
the first boring game steps, where nothing happens). Next, the actor evaluates what to
do, and plays the game, and its experience is memorized in replay memory. Then, at
regular intervals (after a warmup period), the critic goes through a training step. It
samples a batch of memories and asks the actor to estimate the Q-Values of all actions
for the next state, and it applies Equation 16-7 to compute the target Q-Value y_val.
The only tricky part here is that we must multiply the next state’s Q-Values by the
continues vector to zero out the Q-Values corresponding to memories where the
game was over. Next we run a training operation to improve the critic’s ability to pre-
dict Q-Values. Finally, at regular intervals we copy the critic to the actor, and we save
the model.
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Unfortunately, training is very slow: if you use your laptop for
training, it will take days before Ms. Pac-Man gets any good, and if
you look at the learning curve, measuring the average rewards per
episode, you will notice that it is extremely noisy. At some points
there may be no apparent progress for a very long time until sud-
denly the agent learns to survive a reasonable amount of time. As
mentioned earlier, one solution is to inject as much prior knowl-
edge as possible into the model (e.g., through preprocessing,
rewards, and so on), and you can also try to bootstrap the model by
first training it to imitate a basic strategy. In any case, RL still
requires quite a lot of patience and tweaking, but the end result is
very exciting.

Exercises

10.

. How would you define Reinforcement Learning? How is it different from regular

supervised or unsupervised learning?

. Can you think of three possible applications of RL that were not mentioned in

this chapter? For each of them, what is the environment? What is the agent?
What are possible actions? What are the rewards?

. What is the discount rate? Can the optimal policy change if you modify the dis-

count rate?

How do you measure the performance of a Reinforcement Learning agent?

. What is the credit assignment problem? When does it occur? How can you allevi-

ate it?
What is the point of using a replay memory?
What is an off-policy RL algorithm?

Use Deep Q-Learning to tackle OpenAl gym’s “BypedalWalker-v2” The Q-
networks do not need to be very deep for this task.

. Use policy gradients to train an agent to play Pong, the famous Atari game (Pong-

v0 in the OpenAl gym). Beware: an individual observation is insufficient to tell
the direction and speed of the ball. One solution is to pass two observations at a
time to the neural network policy. To reduce dimensionality and speed up train-
ing, you should definitely preprocess these images (crop, resize, and convert
them to black and white), and possibly merge them into a single image (e.g., by
overlaying them).

If you have about $100 to spare, you can purchase a Raspberry Pi 3 plus some
cheap robotics components, install TensorFlow on the Pi, and go wild! For an
example, check out this fun post by Lukas Biewald, or take a look at GoPiGo or
BrickPi. Why not try to build a real-life cartpole by training the robot using pol-
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icy gradients? Or build a robotic spider that learns to walk; give it rewards any
time it gets closer to some objective (you will need sensors to measure the dis-
tance to the objective). The only limit is your imagination.

Solutions to these exercises are available in Appendix A.

Thank You!

Before we close the last chapter of this book, I would like to thank you for reading it
up to the last paragraph. I truly hope that you had as much pleasure reading this book
as I had writing it, and that it will be useful for your projects, big or small.

If you find errors, please send feedback. More generally, I would love to know what
you think, so please don't hesitate to contact me via O'Reilly, or through the ageron/
handson-ml GitHub project.

Going forward, my best advice to you is to practice and practice: try going through all
the exercises if you have not done so already, play with the Jupyter notebooks, join
Kaggle.com or some other ML community, watch ML courses, read papers, attend
conferences, meet experts. You may also want to study some topics that we did not
cover in this book, including recommender systems, clustering algorithms, anomaly
detection algorithms, and genetic algorithms.

My greatest hope is that this book will inspire you to build a wonderful ML applica-
tion that will benefit all of us! What will it be?

Aurélien Géron, November 26th, 2016
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APPENDIX A

Exercise Solutions

Solutions to the coding exercises are available in the online Jupyter
notebooks at https://github.com/ageron/handson-ml.

Chapter 1: The Machine Learning Landscape

1.

Machine Learning is about building systems that can learn from data. Learning
means getting better at some task, given some performance measure.

. Machine Learning is great for complex problems for which we have no algorith-

mic solution, to replace long lists of hand-tuned rules, to build systems that adapt
to fluctuating environments, and finally to help humans learn (e.g., data mining).

. A labeled training set is a training set that contains the desired solution (a.k.a. a

label) for each instance.

The two most common supervised tasks are regression and classification.

5. Common unsupervised tasks include clustering, visualization, dimensionality

reduction, and association rule learning.

. Reinforcement Learning is likely to perform best if we want a robot to learn to

walk in various unknown terrains since this is typically the type of problem that
Reinforcement Learning tackles. It might be possible to express the problem as a
supervised or semisupervised learning problem, but it would be less natural.

If you don’t know how to define the groups, then you can use a clustering algo-
rithm (unsupervised learning) to segment your customers into clusters of similar
customers. However, if you know what groups you would like to have, then you
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10.

11.

12.

13.

14.

15.

16.

can feed many examples of each group to a classification algorithm (supervised
learning), and it will classify all your customers into these groups.

. Spam detection is a typical supervised learning problem: the algorithm is fed

many emails along with their label (spam or not spam).

. An online learning system can learn incrementally, as opposed to a batch learn-

ing system. This makes it capable of adapting rapidly to both changing data and
autonomous systems, and of training on very large quantities of data.

Out-of-core algorithms can handle vast quantities of data that cannot fit in a
computer’s main memory. An out-of-core learning algorithm chops the data into
mini-batches and uses online learning techniques to learn from these mini-
batches.

An instance-based learning system learns the training data by heart; then, when
given a new instance, it uses a similarity measure to find the most similar learned
instances and uses them to make predictions.

A model has one or more model parameters that determine what it will predict
given a new instance (e.g., the slope of a linear model). A learning algorithm tries
to find optimal values for these parameters such that the model generalizes well
to new instances. A hyperparameter is a parameter of the learning algorithm
itself, not of the model (e.g., the amount of regularization to apply).

Model-based learning algorithms search for an optimal value for the model
parameters such that the model will generalize well to new instances. We usually
train such systems by minimizing a cost function that measures how bad the sys-
tem is at making predictions on the training data, plus a penalty for model com-
plexity if the model is regularized. To make predictions, we feed the new
instance’s features into the model’s prediction function, using the parameter val-
ues found by the learning algorithm.

Some of the main challenges in Machine Learning are the lack of data, poor data
quality, nonrepresentative data, uninformative features, excessively simple mod-
els that underfit the training data, and excessively complex models that overfit
the data.

If a model performs great on the training data but generalizes poorly to new
instances, the model is likely overfitting the training data (or we got extremely
lucky on the training data). Possible solutions to overfitting are getting more
data, simplifying the model (selecting a simpler algorithm, reducing the number
of parameters or features used, or regularizing the model), or reducing the noise
in the training data.

A test set is used to estimate the generalization error that a model will make on
new instances, before the model is launched in production.
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17.

18.

19.

A validation set is used to compare models. It makes it possible to select the best
model and tune the hyperparameters.

If you tune hyperparameters using the test set, you risk overfitting the test set,
and the generalization error you measure will be optimistic (you may launch a
model that performs worse than you expect).

Cross-validation is a technique that makes it possible to compare models (for
model selection and hyperparameter tuning) without the need for a separate vali-
dation set. This saves precious training data.

Chapter 2: End-to-End Machine Learning Project

See the Jupyter notebooks available at https://github.com/ageron/handson-ml.

Chapter 3: Classification

See the Jupyter notebooks available at https://github.com/ageron/handson-ml.

Chapter 4: Training Linear Models

1.

If you have a training set with millions of features you can use Stochastic Gradi-
ent Descent or Mini-batch Gradient Descent, and perhaps Batch Gradient
Descent if the training set fits in memory. But you cannot use the Normal Equa-
tion because the computational complexity grows quickly (more than quadrati-
cally) with the number of features.

. If the features in your training set have very different scales, the cost function will

have the shape of an elongated bowl, so the Gradient Descent algorithms will take
a long time to converge. To solve this you should scale the data before training
the model. Note that the Normal Equation will work just fine without scaling.

. Gradient Descent cannot get stuck in a local minimum when training a Logistic

Regression model because the cost function is convex.!

. If the optimization problem is convex (such as Linear Regression or Logistic

Regression), and assuming the learning rate is not too high, then all Gradient
Descent algorithms will approach the global optimum and end up producing
fairly similar models. However, unless you gradually reduce the learning rate,
Stochastic GD and Mini-batch GD will never truly converge; instead, they will
keep jumping back and forth around the global optimum. This means that even

1 If you draw a straight line between any two points on the curve, the line never crosses the curve.

Exercise Solutions | 473


https://github.com/ageron/handson-ml
https://github.com/ageron/handson-ml

10.

if you let them run for a very long time, these Gradient Descent algorithms will
produce slightly different models.

. If the validation error consistently goes up after every epoch, then one possibility

is that the learning rate is too high and the algorithm is diverging. If the training
error also goes up, then this is clearly the problem and you should reduce the
learning rate. However, if the training error is not going up, then your model is
overfitting the training set and you should stop training.

Due to their random nature, neither Stochastic Gradient Descent nor Mini-batch
Gradient Descent is guaranteed to make progress at every single training itera-
tion. So if you immediately stop training when the validation error goes up, you
may stop much too early, before the optimum is reached. A better option is to
save the model at regular intervals, and when it has not improved for a long time
(meaning it will probably never beat the record), you can revert to the best saved
model.

Stochastic Gradient Descent has the fastest training iteration since it considers
only one training instance at a time, so it is generally the first to reach the vicinity
of the global optimum (or Mini-batch GD with a very small mini-batch size).
However, only Batch Gradient Descent will actually converge, given enough
training time. As mentioned, Stochastic GD and Mini-batch GD will bounce
around the optimum, unless you gradually reduce the learning rate.

. If the validation error is much higher than the training error, this is likely because

your model is overfitting the training set. One way to try to fix this is to reduce
the polynomial degree: a model with fewer degrees of freedom is less likely to
overfit. Another thing you can try is to regularize the model—for example, by
adding an ¢, penalty (Ridge) or an ¢, penalty (Lasso) to the cost function. This
will also reduce the degrees of freedom of the model. Lastly, you can try to
increase the size of the training set.

. If both the training error and the validation error are almost equal and fairly

high, the model is likely underfitting the training set, which means it has a high
bias. You should try reducing the regularization hyperparameter «.

Let’s see:
« A model with some regularization typically performs better than a model

without any regularization, so you should generally prefer Ridge Regression
over plain Linear Regression.

o Lasso Regression uses an £, penalty, which tends to push the weights down to
exactly zero. This leads to sparse models, where all weights are zero except for

2 Moreover, the Normal Equation requires computing the inverse of a matrix, but that matrix is not always
invertible. In contrast, the matrix for Ridge Regression is always invertible.
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the most important weights. This is a way to perform feature selection auto-
matically, which is good if you suspect that only a few features actually matter.
When you are not sure, you should prefer Ridge Regression.

« Elastic Net is generally preferred over Lasso since Lasso may behave erratically
in some cases (when several features are strongly correlated or when there are
more features than training instances). However, it does add an extra hyper-
parameter to tune. If you just want Lasso without the erratic behavior, you can
just use Elastic Net with an 11_rattio close to 1.

11. If you want to classify pictures as outdoor/indoor and daytime/nighttime, since
these are not exclusive classes (i.e., all four combinations are possible) you should
train two Logistic Regression classifiers.

12. See the Jupyter notebooks available at https://github.com/ageron/handson-ml.

Chapter 5: Support Vector Machines

1. The fundamental idea behind Support Vector Machines is to fit the widest possi-
ble “street” between the classes. In other words, the goal is to have the largest pos-
sible margin between the decision boundary that separates the two classes and
the training instances. When performing soft margin classification, the SVM
searches for a compromise between perfectly separating the two classes and hav-
ing the widest possible street (i.e., a few instances may end up on the street).
Another key idea is to use kernels when training on nonlinear datasets.

2. After training an SVM, a support vector is any instance located on the “street” (see
the previous answer), including its border. The decision boundary is entirely
determined by the support vectors. Any instance that is not a support vector (i.e.,
off the street) has no influence whatsoever; you could remove them, add more
instances, or move them around, and as long as they stay off the street they won’t
affect the decision boundary. Computing the predictions only involves the sup-
port vectors, not the whole training set.

3. SVMs try to fit the largest possible “street” between the classes (see the first
answer), so if the training set is not scaled, the SVM will tend to neglect small
features (see Figure 5-2).

4. An SVM classifier can output the distance between the test instance and the deci-
sion boundary, and you can use this as a confidence score. However, this score
cannot be directly converted into an estimation of the class probability. If you set
probability=True when creating an SVM in Scikit-Learn, then after training it
will calibrate the probabilities using Logistic Regression on the SVM’s scores
(trained by an additional five-fold cross-validation on the training data). This
will add the predict_proba() and predict_log_proba() methods to the SVM.
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5. This question applies only to linear SVMs since kernelized can only use the dual
form. The computational complexity of the primal form of the SVM problem is
proportional to the number of training instances m, while the computational
complexity of the dual form is proportional to a number between m? and m>. So
if there are millions of instances, you should definitely use the primal form,
because the dual form will be much too slow.

6. If an SVM classifier trained with an RBF kernel underfits the training set, there
might be too much regularization. To decrease it, you need to increase gamma or C

(or both).

7. Let’s call the QP parameters for the hard-margin problem H’, f, A’ and b’ (see
“Quadratic Programming” on page 159). The QP parameters for the soft-margin
problem have m additional parameters (1, = n + 1 + m) and m additional con-

straints (n, = 2m). They can be defined like so:

« H is equal to H/, plus m columns of Os on the right and m rows of 0Os at the
H O ---
bottom: H=|0 0

o fis equal to f with m additional elements, all equal to the value of the hyper-
parameter C.

o b is equal to b’ with m additional elements, all equal to 0.

« Aisequal to A/, with an extra m x m identity matrix I,, appended to the right,
A I

m
0 -1,

For the solutions to exercises 8, 9, and 10, please see the Jupyter notebooks available
at https://github.com/ageron/handson-ml.

- I,, just below it, and the rest filled with zeros: A =

Chapter 6: Decision Trees

1. The depth of a well-balanced binary tree containing m leaves is equal to log,(m)>,
rounded up. A binary Decision Tree (one that makes only binary decisions, as is
the case of all trees in Scikit-Learn) will end up more or less well balanced at the
end of training, with one leaf per training instance if it is trained without restric-
tions. Thus, if the training set contains one million instances, the Decision Tree
will have a depth of log,(10°) = 20 (actually a bit more since the tree will generally
not be perfectly well balanced).

3 log, is the binary log, log,(m) = log(m) / log(2).
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2. A node’s Gini impurity is generally lower than its parent’s. This is ensured by the
CART training algorithm’s cost function, which splits each node in a way that
minimizes the weighted sum of its children’s Gini impurities. However, if one
child is smaller than the other, it is possible for it to have a higher Gini impurity
than its parent, as long as this increase is more than compensated for by a
decrease of the other child’s impurity. For example, consider a node containing

42

2
four instances of class A and 1 of class B. Its Gini impurity is 1 — é -z =032

Now suppose the dataset is one-dimensional and the instances are lined up in the
following order: A, B, A, A, A. You can verify that the algorithm will split this
node after the second instance, producing one child node with instances A, B,
and the other child node with instances A, A, A. The first child node’s Gini

2 g2
impurity is 1 — % - % = 0.5, which is higher than its parent. This is compensated

for by the fact that the other node is pure, so the overall weighted Gini impurity

is % x 0.5+ % x 0 =0.2, which is lower than the parent’s Gini impurity.

3. If a Decision Tree is overfitting the training set, it may be a good idea to decrease
max_depth, since this will constrain the model, regularizing it.

4. Decision Trees don’t care whether or not the training data is scaled or centered;
that’s one of the nice things about them. So if a Decision Tree underfits the train-
ing set, scaling the input features will just be a waste of time.

5. The computational complexity of training a Decision Tree is O(n x m log(m)). So
if you multiply the training set size by 10, the training time will be multiplied by
K = (n x 10m x log(10m)) / (n x m x log(m)) = 10 x log(10m) / log(m). If m =
105, then K = 11.7, so you can expect the training time to be roughly 11.7 hours.

6. Presorting the training set speeds up training only if the dataset is smaller than a
few thousand instances. If it contains 100,000 instances, setting presort=True
will considerably slow down training.

For the solutions to exercises 7 and 8, please see the Jupyter notebooks available at
https://github.com/ageron/handson-ml.

Chapter 7: Ensemble Learning and Random Forests

1. If you have trained five different models and they all achieve 95% precision, you
can try combining them into a voting ensemble, which will often give you even
better results. It works better if the models are very different (e.g., an SVM classi-
fier, a Decision Tree classifier, a Logistic Regression classifier, and so on). It is
even better if they are trained on different training instances (that’s the whole
point of bagging and pasting ensembles), but if not it will still work as long as the
models are very different.
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. A hard voting classifier just counts the votes of each classifier in the ensemble

and picks the class that gets the most votes. A soft voting classifier computes the
average estimated class probability for each class and picks the class with the
highest probability. This gives high-confidence votes more weight and often per-
forms better, but it works only if every classifier is able to estimate class probabil-
ities (e.g., for the SVM classifiers in Scikit-Learn you must set
probability=True).

. It is quite possible to speed up training of a bagging ensemble by distributing it

across multiple servers, since each predictor in the ensemble is independent of
the others. The same goes for pasting ensembles and Random Forests, for the
same reason. However, each predictor in a boosting ensemble is built based on
the previous predictor, so training is necessarily sequential, and you will not gain
anything by distributing training across multiple servers. Regarding stacking
ensembles, all the predictors in a given layer are independent of each other, so
they can be trained in parallel on multiple servers. However, the predictors in one
layer can only be trained after the predictors in the previous layer have all been
trained.

. With out-of-bag evaluation, each predictor in a bagging ensemble is evaluated

using instances that it was not trained on (they were held out). This makes it pos-
sible to have a fairly unbiased evaluation of the ensemble without the need for an
additional validation set. Thus, you have more instances available for training,
and your ensemble can perform slightly better.

. When you are growing a tree in a Random Forest, only a random subset of the

features is considered for splitting at each node. This is true as well for Extra-
Trees, but they go one step further: rather than searching for the best possible
thresholds, like regular Decision Trees do, they use random thresholds for each
feature. This extra randomness acts like a form of regularization: if a Random
Forest overfits the training data, Extra-Trees might perform better. Moreover,
since Extra-Trees don't search for the best possible thresholds, they are much
faster to train than Random Forests. However, they are neither faster nor slower
than Random Forests when making predictions.

. If your AdaBoost ensemble underfits the training data, you can try increasing the

number of estimators or reducing the regularization hyperparameters of the base
estimator. You may also try slightly increasing the learning rate.

. If your Gradient Boosting ensemble overfits the training set, you should try

decreasing the learning rate. You could also use early stopping to find the right
number of predictors (you probably have too many).

For the solutions to exercises 8 and 9, please see the Jupyter notebooks available at
https://github.com/ageron/handson-ml.
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Chapter 8: Dimensionality Reduction

1. Motivations and drawbacks:

o The main motivations for dimensionality reduction are:

— To speed up a subsequent training algorithm (in some cases it may even
remove noise and redundant features, making the training algorithm per-
form better).

— To visualize the data and gain insights on the most important features.
— Simply to save space (compression).
o The main drawbacks are:

— Some information is lost, possibly degrading the performance of subse-
quent training algorithms.

— It can be computationally intensive.
— It adds some complexity to your Machine Learning pipelines.

— Transformed features are often hard to interpret.

2. The curse of dimensionality refers to the fact that many problems that do not
exist in low-dimensional space arise in high-dimensional space. In Machine
Learning, one common manifestation is the fact that randomly sampled high-
dimensional vectors are generally very sparse, increasing the risk of overfitting
and making it very difficult to identify patterns in the data without having plenty
of training data.

3. Once a dataset’s dimensionality has been reduced using one of the algorithms we
discussed, it is almost always impossible to perfectly reverse the operation,
because some information gets lost during dimensionality reduction. Moreover,
while some algorithms (such as PCA) have a simple reverse transformation pro-
cedure that can reconstruct a dataset relatively similar to the original, other algo-
rithms (such as T-SNE) do not.

4. PCA can be used to significantly reduce the dimensionality of most datasets, even
if they are highly nonlinear, because it can at least get rid of useless dimensions.
However, if there are no useless dimensions—for example, the Swiss roll—then
reducing dimensionality with PCA will lose too much information. You want to
unroll the Swiss roll, not squash it.

5. That’s a trick question: it depends on the dataset. Let’s look at two extreme exam-
ples. First, suppose the dataset is composed of points that are almost perfectly
aligned. In this case, PCA can reduce the dataset down to just one dimension
while still preserving 95% of the variance. Now imagine that the dataset is com-
posed of perfectly random points, scattered all around the 1,000 dimensions. In
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this case all 1,000 dimensions are required to preserve 95% of the variance. So the
answer is, it depends on the dataset, and it could be any number between 1 and
1,000. Plotting the explained variance as a function of the number of dimensions
is one way to get a rough idea of the dataset’s intrinsic dimensionality.

. Regular PCA is the default, but it works only if the dataset fits in memory. Incre-

mental PCA is useful for large datasets that don't fit in memory, but it is slower
than regular PCA, so if the dataset fits in memory you should prefer regular
PCA. Incremental PCA is also useful for online tasks, when you need to apply
PCA on the fly, every time a new instance arrives. Randomized PCA is useful
when you want to considerably reduce dimensionality and the dataset fits in
memory; in this case, it is much faster than regular PCA. Finally, Kernel PCA is
useful for nonlinear datasets.

Intuitively, a dimensionality reduction algorithm performs well if it eliminates a
lot of dimensions from the dataset without losing too much information. One
way to measure this is to apply the reverse transformation and measure the
reconstruction error. However, not all dimensionality reduction algorithms pro-
vide a reverse transformation. Alternatively, if you are using dimensionality
reduction as a preprocessing step before another Machine Learning algorithm
(e.g., a Random Forest classifier), then you can simply measure the performance
of that second algorithm; if dimensionality reduction did not lose too much
information, then the algorithm should perform just as well as when using the
original dataset.

. It can absolutely make sense to chain two different dimensionality reduction

algorithms. A common example is using PCA to quickly get rid of a large num-
ber of useless dimensions, then applying another much slower dimensionality
reduction algorithm, such as LLE. This two-step approach will likely yield the
same performance as using LLE only, but in a fraction of the time.

For the solutions to exercises 9 and 10, please see the Jupyter notebooks available at
https://github.com/ageron/handson-ml.

Chapter 9: Up and Running with TensorFlow

1.

Main benefits and drawbacks of creating a computation graph rather than
directly executing the computations:
+ Main benefits:

— TensorFlow can automatically compute the gradients for you (using
reverse-mode autodiff).

— TensorFlow can take care of running the operations in parallel in different
threads.
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— It makes it easier to run the same model across different devices.

— It simplifies introspection—for example, to view the model in TensorBoard.
o Main drawbacks:

— It makes the learning curve steeper.

— It makes step-by-step debugging harder.

. Yes, the statement a_val = a.eval(session=sess) is indeed equivalent to a_val
=sess.run(a).

. No, the statement a_val, b_val = a.eval(session=sess), b.eval(ses
silon=sess) is not equivalent to a_val, b_val = sess.run([a, b]).Indeed, the
first statement runs the graph twice (once to compute a, once to compute b),
while the second statement runs the graph only once. If any of these operations
(or the ops they depend on) have side effects (e.g., a variable is modified, an item
is inserted in a queue, or a reader reads a file), then the effects will be different. If
they don’t have side effects, both statements will return the same result, but the
second statement will be faster than the first.

. No, you cannot run two graphs in the same session. You would have to merge the
graphs into a single graph first.

. In local TensorFlow, sessions manage variable values, so if you create a graph g
containing a variable w, then start two threads and open a local session in each
thread, both using the same graph g, then each session will have its own copy of
the variable w. However, in distributed TensorFlow, variable values are stored in
containers managed by the cluster, so if both sessions connect to the same cluster
and use the same container, then they will share the same variable value for w.

. A variable is initialized when you call its initializer, and it is destroyed when the
session ends. In distributed TensorFlow, variables live in containers on the clus-
ter, so closing a session will not destroy the variable. To destroy a variable, you
need to clear its container.

. Variables and placeholders are extremely different, but beginners often confuse
them:

o A variable is an operation that holds a value. If you run the variable, it returns
that value. Before you can run it, you need to initialize it. You can change the
variable’s value (for example, by using an assignment operation). It is stateful:
the variable keeps the same value upon successive runs of the graph. It is typi-
cally used to hold model parameters but also for other purposes (e.g., to count
the global training step).

o Placeholders technically don’t do much: they just hold information about the
type and shape of the tensor they represent, but they have no value. In fact, if
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8.

10.

11.

you try to evaluate an operation that depends on a placeholder, you must feed
TensorFlow the value of the placeholder (using the feed_dict argument) or
else you will get an exception. Placeholders are typically used to feed training
or test data to TensorFlow during the execution phase. They are also useful to
pass a value to an assignment node, to change the value of a variable (e.g.,
model weights).

If you run the graph to evaluate an operation that depends on a placeholder but
you don't feed its value, you get an exception. If the operation does not depend
on the placeholder, then no exception is raised.

. When you run a graph, you can feed the output value of any operation, not just

the value of placeholders. In practice, however, this is rather rare (it can be useful,
for example, when you are caching the output of frozen layers; see Chapter 11).

You can specify a variable’s initial value when constructing the graph, and it will
be initialized later when you run the variable’s initializer during the execution
phase. If you want to change that variable’s value to anything you want during the
execution phase, then the simplest option is to create an assignment node (dur-
ing the graph construction phase) using the tf.assign() function, passing the
variable and a placeholder as parameters. During the execution phase, you can
run the assignment operation and feed the variable’s new value using the place-
holder.

import as

x = tf.Variable(tf.random_uniform(shape=(), minval=0.0, maxval=1.0))
x_new_val = tf.placeholder(shape=(), dtype=tf.float32)
x_assign = tf.assign(x, x_new_val)

with tf.Session():

x.initializer.run() # random number is sampled *now*

print(x.eval()) # 0.646157 (some random number)

x_assign.eval(feed_dict={x_new_val: 5.0})

print(x.eval()) # 5.0
Reverse-mode autodiff (implemented by TensorFlow) needs to traverse the graph
only twice in order to compute the gradients of the cost function with regards to
any number of variables. On the other hand, forward-mode autodiff would need
to run once for each variable (so 10 times if we want the gradients with regards to
10 different variables). As for symbolic differentiation, it would build a different
graph to compute the gradients, so it would not traverse the original graph at all
(except when building the new gradients graph). A highly optimized symbolic
differentiation system could potentially run the new gradients graph only once to
compute the gradients with regards to all variables, but that new graph may be
horribly complex and inefficient compared to the original graph.
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12. See the Jupyter notebooks available at https://github.com/ageron/handson-ml.

Chapter 10: Introduction to Artificial Neural Networks

1.

Here is a neural network based on the original artificial neurons that computes A
@ B (where @ represents the exclusive OR), using the fact that A ® B = (A A - B)
V (= A A B). There are other solutions—for example, using the fact that A ® B =
(AV B) A (A A B), or the fact that A@B=(AV B) A(m AV A B),and so on.

. A classical Perceptron will converge only if the dataset is linearly separable, and it

won't be able to estimate class probabilities. In contrast, a Logistic Regression
classifier will converge to a good solution even if the dataset is not linearly sepa-
rable, and it will output class probabilities. If you change the Perceptron’s activa-
tion function to the logistic activation function (or the softmax activation
function if there are multiple neurons), and if you train it using Gradient Descent
(or some other optimization algorithm minimizing the cost function, typically
cross entropy), then it becomes equivalent to a Logistic Regression classifier.

The logistic activation function was a key ingredient in training the first MLPs
because its derivative is always nonzero, so Gradient Descent can always roll
down the slope. When the activation function is a step function, Gradient
Descent cannot move, as there is no slope at all.

The step function, the logistic function, the hyperbolic tangent, the rectified lin-
ear unit (see Figure 10-8). See Chapter 11 for other examples, such as ELU and
variants of the ReLU.

. Considering the MLP described in the question: suppose you have an MLP com-

posed of one input layer with 10 passthrough neurons, followed by one hidden
layer with 50 artificial neurons, and finally one output layer with 3 artificial neu-
rons. All artificial neurons use the ReLU activation function.
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o The shape of the input matrix X is m x 10, where m represents the training
batch size.

o The shape of the hidden layer’s weight vector W, is 10 x 50 and the length of
its bias vector by, is 50.

o The shape of the output layer’s weight vector W, is 50 x 3, and the length of its
bias vector b, is 3.

o The shape of the network’s output matrix Y is m x 3.

e Y=X:-W,+b,) - W, + b,. Note that when you are adding a bias vector to a
matrix, it is added to every single row in the matrix, which is called broadcast-

ing.

To classify email into spam or ham, you just need one neuron in the output layer
of a neural network—for example, indicating the probability that the email is
spam. You would typically use the logistic activation function in the output layer
when estimating a probability. If instead you want to tackle MNIST, you need 10
neurons in the output layer, and you must replace the logistic function with the
softmax activation function, which can handle multiple classes, outputting one
probability per class. Now, if you want your neural network to predict housing
prices like in Chapter 2, then you need one output neuron, using no activation
function at all in the output layer.*

. Backpropagation is a technique used to train artificial neural networks. It first

computes the gradients of the cost function with regards to every model parame-
ter (all the weights and biases), and then it performs a Gradient Descent step
using these gradients. This backpropagation step is typically performed thou-
sands or millions of times, using many training batches, until the model parame-
ters converge to values that (hopefully) minimize the cost function. To compute
the gradients, backpropagation uses reverse-mode autodift (although it wasn’t
called that when backpropagation was invented, and it has been reinvented sev-
eral times). Reverse-mode autodiff performs a forward pass through a computa-
tion graph, computing every node’s value for the current training batch, and then
it performs a reverse pass, computing all the gradients at once (see Appendix D
for more details). So what’s the difference? Well, backpropagation refers to the
whole process of training an artificial neural network using multiple backpropa-
gation steps, each of which computes gradients and uses them to perform a Gra-
dient Descent step. In contrast, reverse-mode autodiff is a simply a technique to
compute gradients efficiently, and it happens to be used by backpropagation.

4 When the values to predict can vary by many orders of magnitude, then you may want to predict the loga-
rithm of the target value rather than the target value directly. Simply computing the exponential of the neural
network’s output will give you the estimated value (since exp(log v) = v).
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8. Here is a list of all the hyperparameters you can tweak in a basic MLP: the num-

ber of hidden layers, the number of neurons in each hidden layer, and the activa-
tion function used in each hidden layer and in the output layer.’ In general, the
ReLU activation function (or one of its variants; see Chapter 11) is a good default
for the hidden layers. For the output layer, in general you will want the logistic
activation function for binary classification, the softmax activation function for
multiclass classification, or no activation function for regression.

If the MLP overfits the training data, you can try reducing the number of hidden
layers and reducing the number of neurons per hidden layer.

9. See the Jupyter notebooks available at https://github.com/ageron/handson-ml.

Chapter 11: Training Deep Neural Nets

1. No, all weights should be sampled independently; they should not all have the

same initial value. One important goal of sampling weights randomly is to break
symmetries: if all the weights have the same initial value, even if that value is not
zero, then symmetry is not broken (i.e., all neurons in a given layer are equiva-
lent), and backpropagation will be unable to break it. Concretely, this means that
all the neurons in any given layer will always have the same weights. It’s like hav-
ing just one neuron per layer, and much slower. It is virtually impossible for such
a configuration to converge to a good solution.

. It is perfectly fine to initialize the bias terms to zero. Some people like to initialize
them just like weights, and that’s okay too; it does not make much difference.

. A few advantages of the ELU function over the ReLU function are:

o It can take on negative values, so the average output of the neurons in any
given layer is typically closer to 0 than when using the ReLU activation func-
tion (which never outputs negative values). This helps alleviate the vanishing
gradients problem.

o It always has a nonzero derivative, which avoids the dying units issue that can
affect ReLU units.

5 In Chapter 11 we discuss many techniques that introduce additional hyperparameters: type of weight initiali-

zation, activation function hyperparameters (e.g., amount of leak in leaky ReLU), Gradient Clipping thres-
hold, type of optimizer and its hyperparameters (e.g., the momentum hyperparameter when using a

MomentumOptimizer), type of regularization for each layer, and the regularization hyperparameters (e.g., drop-

out rate when using dropout) and so on.
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o It is smooth everywhere, whereas the ReLU’s slope abruptly jumps from 0 to 1
at z = 0. Such an abrupt change can slow down Gradient Descent because it
will bounce around z = 0.

. The ELU activation function is a good default. If you need the neural network to

be as fast as possible, you can use one of the leaky ReLU variants instead (e.g., a
simple leaky ReLU using the default hyperparameter value). The simplicity of the
ReLU activation function makes it many people’s preferred option, despite the
fact that they are generally outperformed by the ELU and leaky ReLU. However,
the ReLU activation function’s capability of outputting precisely zero can be use-
ful in some cases (e.g., see Chapter 15). The hyperbolic tangent (tanh) can be use-
ful in the output layer if you need to output a number between -1 and 1, but
nowadays it is not used much in hidden layers. The logistic activation function is
also useful in the output layer when you need to estimate a probability (e.g., for
binary classification), but it is also rarely used in hidden layers (there are excep-
tions—for example, for the coding layer of variational autoencoders; see Chap-
ter 15). Finally, the softmax activation function is useful in the output layer to
output probabilities for mutually exclusive classes, but other than that it is rarely
(if ever) used in hidden layers.

. If you set the momentum hyperparameter too close to 1 (e.g., 0.99999) when using

a MomentumOptimizer, then the algorithm will likely pick up a lot of speed, hope-
fully roughly toward the global minimum, but then it will shoot right past the
minimum, due to its momentum. Then it will slow down and come back, accel-
erate again, overshoot again, and so on. It may oscillate this way many times
before converging, so overall it will take much longer to converge than with a
smaller momentum value.

One way to produce a sparse model (i.e., with most weights equal to zero) is to
train the model normally, then zero out tiny weights. For more sparsity, you can
apply €, regularization during training, which pushes the optimizer toward spar-
sity. A third option is to combine ¢, regularization with dual averaging, using
TensorFlow’s FTRLOptimizer class.

Yes, dropout does slow down training, in general roughly by a factor of two.
However, it has no impact on inference since it is only turned on during training.

For the solutions to exercises 8, 9, and 10, please see the Jupyter notebooks available
at https://github.com/ageron/handson-ml.
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Chapter 12: Distributing TensorFlow Across Devices and
Servers

1. When a TensorFlow process starts, it grabs all the available memory on all GPU

devices that are visible to it, so if you get a CUDA_ERROR_OUT_OF_MEMORY when
starting your TensorFlow program, it probably means that other processes are
running that have already grabbed all the memory on at least one visible GPU
device (most likely it is another TensorFlow process). To fix this problem, a triv-
ial solution is to stop the other processes and try again. However, if you need all
processes to run simultaneously, a simple option is to dedicate different devices
to each process, by setting the CUDA_VISIBLE_DEVICES environment variable
appropriately for each device. Another option is to configure TensorFlow to grab
only part of the GPU memory, instead of all of it, by creating a ConfigProto, set-
ting its gpu_options.per_process_gpu_memory_fraction to the proportion of
the total memory that it should grab (e.g., 0.4), and using this ConfigProto when
opening a session. The last option is to tell TensorFlow to grab memory only
when it needs it by setting the gpu_options.allow_growth to True. However,
this last option is usually not recommended because any memory that Tensor-
Flow grabs is never released, and it is harder to guarantee a repeatable behavior
(there may be race conditions depending on which processes start first, how
much memory they need during training, and so on).

. By pinning an operation on a device, you are telling TensorFlow that this is
where you would like this operation to be placed. However, some constraints may
prevent TensorFlow from honoring your request. For example, the operation
may have no implementation (called a kernel) for that particular type of device.
In this case, TensorFlow will raise an exception by default, but you can configure
it to fall back to the CPU instead (this is called soft placement). Another example
is an operation that can modify a variable; this operation and the variable need to
be collocated. So the difference between pinning an operation and placing an
operation is that pinning is what you ask TensorFlow (“Please place this opera-
tion on GPU #1”) while placement is what TensorFlow actually ends up doing
(“Sorry, falling back to the CPU”).

. If you are running on a GPU-enabled TensorFlow installation, and you just use
the default placement, then if all operations have a GPU kernel (i.e., a GPU
implementation), yes, they will all be placed on the first GPU. However, if one or
more operations do not have a GPU kernel, then by default TensorFlow will raise
an exception. If you configure TensorFlow to fall back to the CPU instead (soft
placement), then all operations will be placed on the first GPU except the ones
without a GPU kernel and all the operations that must be collocated with them
(see the answer to the previous exercise).
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Yes, if you pin a variable to "/gpu:0", it can be used by operations placed
on /gpu:1. TensorFlow will automatically take care of adding the appropriate
operations to transfer the variable’s value across devices. The same goes for devi-
ces located on different servers (as long as they are part of the same cluster).

. Yes, two operations placed on the same device can run in parallel: TensorFlow

automatically takes care of running operations in parallel (on different CPU
cores or different GPU threads), as long as no operation depends on another
operations output. Moreover, you can start multiple sessions in parallel threads
(or processes), and evaluate operations in each thread. Since sessions are inde-
pendent, TensorFlow will be able to evaluate any operation from one session in
parallel with any operation from another session.

Control dependencies are used when you want to postpone the evaluation of an
operation X until after some other operations are run, even though these opera-
tions are not required to compute X. This is useful in particular when X would
occupy a lot of memory and you only need it later in the computation graph, or if
X uses up a lot of I/O (for example, it requires a large variable value located on a
different device or server) and you don’t want it to run at the same time as other
I/0-hungry operations, to avoid saturating the bandwidth.

. You're in luck! In distributed TensorFlow, the variable values live in containers

managed by the cluster, so even if you close the session and exit the client pro-
gram, the model parameters are still alive and well on the cluster. You simply
need to open a new session to the cluster and save the model (make sure you
don’t call the variable initializers or restore a previous model, as this would
destroy your precious new model!).

For the solutions to exercises 8, 9, and 10, please see the Jupyter notebooks available
at https://github.com/ageron/handson-ml.

Chapter 13: Convolutional Neural Networks

1.

These are the main advantages of a CNN over a fully connected DNN for image
classification:

« Because consecutive layers are only partially connected and because it heavily
reuses its weights, a CNN has many fewer parameters than a fully connected
DNN, which makes it much faster to train, reduces the risk of overfitting, and
requires much less training data.

o When a CNN has learned a kernel that can detect a particular feature, it can
detect that feature anywhere on the image. In contrast, when a DNN learns a
feature in one location, it can detect it only in that particular location. Since
images typically have very repetitive features, CNNs are able to generalize
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much better than DNNs for image processing tasks such as classification, using
fewer training examples.

« Finally, a DNN has no prior knowledge of how pixels are organized; it does not
know that nearby pixels are close. A CNN’s architecture embeds this prior
knowledge. Lower layers typically identify features in small areas of the images,
while higher layers combine the lower-level features into larger features. This
works well with most natural images, giving CNNs a decisive head start com-
pared to DNNs.

. Let’s compute how many parameters the CNN has. Since its first convolutional
layer has 3 x 3 kernels, and the input has three channels (red, green, and blue),
then each feature map has 3 x 3 x 3 weights, plus a bias term. That’s 28 parame-
ters per feature map. Since this first convolutional layer has 100 feature maps, it
has a total of 2,800 parameters. The second convolutional layer has 3 x 3 kernels,
and its input is the set of 100 feature maps of the previous layer, so each feature
map has 3 x 3 x 100 = 900 weights, plus a bias term. Since it has 200 feature
maps, this layer has 901 x 200 = 180,200 parameters. Finally, the third and last
convolutional layer also has 3 x 3 kernels, and its input is the set of 200 feature
maps of the previous layers, so each feature map has 3 x 3 x 200 = 1,800 weights,
plus a bias term. Since it has 400 feature maps, this layer has a total of 1,801 x 400
= 720,400 parameters. All in all, the CNN has 2,800 + 180,200 + 720,400 =
903,400 parameters.

Now let’s compute how much RAM this neural network will require (at least)
when making a prediction for a single instance. First let’s compute the feature
map size for each layer. Since we are using a stride of 2 and SAME padding, the
horizontal and vertical size of the feature maps are divided by 2 at each layer
(rounding up if necessary), so as the input channels are 200 x 300 pixels, the first
layer’s feature maps are 100 x 150, the second layer’s feature maps are 50 x 75,
and the third layer’s feature maps are 25 x 38. Since 32 bits is 4 bytes and the first
convolutional layer has 100 feature maps, this first layer takes up 4 x 100 x 150 x
100 = 6 million bytes (about 5.7 MB, considering that 1 MB = 1,024 KB and 1 KB
= 1,024 bytes). The second layer takes up 4 x 50 x 75 x 200 = 3 million bytes
(about 2.9 MB). Finally, the third layer takes up 4 x 25 x 38 x 400 = 1,520,000
bytes (about 1.4 MB). However, once a layer has been computed, the memory
occupied by the previous layer can be released, so if everything is well optimized,
only 6 + 9 = 15 million bytes (about 14.3 MB) of RAM will be required (when the
second layer has just been computed, but the memory occupied by the first layer
is not released yet). But wait, you also need to add the memory occupied by the
CNN'’s parameters. We computed earlier that it has 903,400 parameters, each
using up 4 bytes, so this adds 3,613,600 bytes (about 3.4 MB). The total RAM
required is (at least) 18,613,600 bytes (about 17.8 MB).
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Lastly, lets compute the minimum amount of RAM required when training the
CNN on a mini-batch of 50 images. During training TensorFlow uses backpropa-
gation, which requires keeping all values computed during the forward pass until
the reverse pass begins. So we must compute the total RAM required by all layers
for a single instance and multiply that by 50! At that point let’s start counting in
megabytes rather than bytes. We computed before that the three layers require
respectively 5.7, 2.9, and 1.4 MB for each instance. That’s a total of 10.0 MB per
instance. So for 50 instances the total RAM is 500 MB. Add to that the RAM
required by the input images, which is 50 x 4 x 200 x 300 x 3 = 36 million bytes
(about 34.3 MB), plus the RAM required for the model parameters, which is
about 3.4 MB (computed earlier), plus some RAM for the gradients (we will
neglect them since they can be released gradually as backpropagation goes down
the layers during the reverse pass). We are up to a total of roughly 500.0 + 34.3 +
3.4 = 537.7 MB. And that’s really an optimistic bare minimum.

. If your GPU runs out of memory while training a CNN, here are five things you

could try to solve the problem (other than purchasing a GPU with more RAM):

+ Reduce the mini-batch size.

 Reduce dimensionality using a larger stride in one or more layers.
« Remove one or more layers.

o Use 16-bit floats instead of 32-bit floats.

o Distribute the CNN across multiple devices.

. A max pooling layer has no parameters at all, whereas a convolutional layer has

quite a few (see the previous questions).

. A local response normalization layer makes the neurons that most strongly acti-

vate inhibit neurons at the same location but in neighboring feature maps, which
encourages different feature maps to specialize and pushes them apart, forcing
them to explore a wider range of features. It is typically used in the lower layers to
have a larger pool of low-level features that the upper layers can build upon.

. The main innovations in AlexNet compared to LeNet-5 are (1) it is much larger

and deeper, and (2) it stacks convolutional layers directly on top of each other,
instead of stacking a pooling layer on top of each convolutional layer. The main
innovation in GoogLeNet is the introduction of inception modules, which make it
possible to have a much deeper net than previous CNN architectures, with fewer
parameters. Finally, ResNet’s main innovation is the introduction of skip connec-
tions, which make it possible to go well beyond 100 layers. Arguably, its simplic-
ity and consistency are also rather innovative.

For the solutions to exercises 7, 8, 9, and 10, please see the Jupyter notebooks avail-
able at https://github.com/ageron/handson-ml.
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Chapter 14: Recurrent Neural Networks

1. Here are a few RNN applications:

« For a sequence-to-sequence RNN: predicting the weather (or any other time
series), machine translation (using an encoder-decoder architecture), video
captioning, speech to text, music generation (or other sequence generation),
identifying the chords of a song.

« For a sequence-to-vector RNN: classifying music samples by music genre, ana-
lyzing the sentiment of a book review, predicting what word an aphasic patient
is thinking of based on readings from brain implants, predicting the probabil-
ity that a user will want to watch a movie based on her watch history (this is
one of many possible implementations of collaborative filtering).

» For a vector-to-sequence RNN: image captioning, creating a music playlist
based on an embedding of the current artist, generating a melody based on a
set of parameters, locating pedestrians in a picture (e.g., a video frame from a
self-driving car’s camera).

2. In general, if you translate a sentence one word at a time, the result will be terri-
ble. For example, the French sentence “Je vous en prie” means “You are welcome,”
but if you translate it one word at a time, you get “I you in pray” Huh? It is much
better to read the whole sentence first and then translate it. A plain sequence-to-
sequence RNN would start translating a sentence immediately after reading the
first word, while an encoder-decoder RNN will first read the whole sentence and
then translate it. That said, one could imagine a plain sequence-to-sequence
RNN that would output silence whenever it is unsure about what to say next (just
like human translators do when they must translate a live broadcast).

3. To classify videos based on the visual content, one possible architecture could be
to take (say) one frame per second, then run each frame through a convolutional
neural network, feed the output of the CNN to a sequence-to-vector RNN, and
finally run its output through a softmax layer, giving you all the class probabili-
ties. For training you would just use cross entropy as the cost function. If you
wanted to use the audio for classification as well, you could convert every second
of audio to a spectrograph, feed this spectrograph to a CNN, and feed the output
of this CNN to the RNN (along with the corresponding output of the other
CNN).

4. Building an RNN using dynamic_rnn() rather than static_rnn() offers several
advantages:

o Itis based on a while_loop() operation that is able to swap the GPU’s memory
to the CPU’s memory during backpropagation, avoiding out-of-memory
errors.
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o It is arguably easier to use, as it can directly take a single tensor as input and
output (covering all time steps), rather than a list of tensors (one per time
step). No need to stack, unstack, or transpose.

« It generates a smaller graph, easier to visualize in TensorBoard.

. To handle variable length input sequences, the simplest option is to set the

sequence_length parameter when calling the static_rnn() or dynamic_rnn()
functions. Another option is to pad the smaller inputs (e.g., with zeros) to make
them the same size as the largest input (this may be faster than the first option if
the input sequences all have very similar lengths). To handle variable-length out-
put sequences, if you know in advance the length of each output sequence, you
can use the sequence_length parameter (for example, consider a sequence-to-
sequence RNN that labels every frame in a video with a violence score: the output
sequence will be exactly the same length as the input sequence). If you don't
know in advance the length of the output sequence, you can use the padding
trick: always output the same size sequence, but ignore any outputs that come
after the end-of-sequence token (by ignoring them when computing the cost
function).

. To distribute training and execution of a deep RNN across multiple GPUs, a

common technique is simply to place each layer on a different GPU (see Chap-
ter 12).

For the solutions to exercises 7, 8, and 9, please see the Jupyter notebooks available at
https://github.com/ageron/handson-ml.

Chapter 15: Autoencoders

1.

Here are some of the main tasks that autoencoders are used for:

« Feature extraction
 Unsupervised pretraining
« Dimensionality reduction
 Generative models

» Anomaly detection (an autoencoder is generally bad at reconstructing outliers)

. If you want to train a classifier and you have plenty of unlabeled training data,

but only a few thousand labeled instances, then you could first train a deep
autoencoder on the full dataset (labeled + unlabeled), then reuse its lower half for
the classifier (i.e., reuse the layers up to the codings layer, included) and train the
classifier using the labeled data. If you have little labeled data, you probably want
to freeze the reused layers when training the classifier.
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3. The fact that an autoencoder perfectly reconstructs its inputs does not necessarily
mean that it is a good autoencoder; perhaps it is simply an overcomplete autoen-
coder that learned to copy its inputs to the codings layer and then to the outputs.
In fact, even if the codings layer contained a single neuron, it would be possible
for a very deep autoencoder to learn to map each training instance to a different
coding (e.g., the first instance could be mapped to 0.001, the second to 0.002, the
third to 0.003, and so on), and it could learn “by heart” to reconstruct the right
training instance for each coding. It would perfectly reconstruct its inputs
without really learning any useful pattern in the data. In practice such a mapping
is unlikely to happen, but it illustrates the fact that perfect reconstructions are not
a guarantee that the autoencoder learned anything useful. However, if it produces
very bad reconstructions, then it is almost guaranteed to be a bad autoencoder.
To evaluate the performance of an autoencoder, one option is to measure the
reconstruction loss (e.g., compute the MSE, the mean square of the outputs
minus the inputs). Again, a high reconstruction loss is a good sign that the
autoencoder is bad, but a low reconstruction loss is not a guarantee that it is
good. You should also evaluate the autoencoder according to what it will be used
for. For example, if you are using it for unsupervised pretraining of a classifier,
then you should also evaluate the classifier’s performance.

4. An undercomplete autoencoder is one whose codings layer is smaller than the
input and output layers. If it is larger, then it is an overcomplete autoencoder.
The main risk of an excessively undercomplete autoencoder is that it may fail to
reconstruct the inputs. The main risk of an overcomplete autoencoder is that it
may just copy the inputs to the outputs, without learning any useful feature.

5. To tie the weights of an encoder layer and its corresponding decoder layer, you
simply make the decoder weights equal to the transpose of the encoder weights.
This reduces the number of parameters in the model by half, often making train-
ing converge faster with less training data, and reducing the risk of overfitting the
training set.

6. To visualize the features learned by the lower layer of a stacked autoencoder, a
common technique is simply to plot the weights of each neuron, by reshaping
each weight vector to the size of an input image (e.g., for MNIST, reshaping a
weight vector of shape [784] to [28, 28]). To visualize the features learned by
higher layers, one technique is to display the training instances that most activate
each neuron.

7. A generative model is a model capable of randomly generating outputs that
resemble the training instances. For example, once trained successfully on the
MNIST dataset, a generative model can be used to randomly generate realistic
images of digits. The output distribution is typically similar to the training data.
For example, since MNIST contains many images of each digit, the generative
model would output roughly the same number of images of each digit. Some
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generative models can be parametrized—for example, to generate only some
kinds of outputs. An example of a generative autoencoder is the variational
autoencoder.

For the solutions to exercises 8, 9, and 10, please see the Jupyter notebooks available
at https://github.com/ageron/handson-ml.

Chapter 16: Reinforcement Learning

1.

Reinforcement Learning is an area of Machine Learning aimed at creating agents
capable of taking actions in an environment in a way that maximizes rewards
over time. There are many differences between RL and regular supervised and
unsupervised learning. Here are a few:

In supervised and unsupervised learning, the goal is generally to find patterns
in the data. In Reinforcement Learning, the goal is to find a good policy.

Unlike in supervised learning, the agent is not explicitly given the “right”
answer. It must learn by trial and error.

Unlike in unsupervised learning, there is a form of supervision, through
rewards. We do not tell the agent how to perform the task, but we do tell it
when it is making progress or when it is failing.

A Reinforcement Learning agent needs to find the right balance between
exploring the environment, looking for new ways of getting rewards, and
exploiting sources of rewards that it already knows. In contrast, supervised and
unsupervised learning systems generally don’t need to worry about explora-
tion; they just feed on the training data they are given.

In supervised and unsupervised learning, training instances are typically inde-
pendent (in fact, they are generally shuffled). In Reinforcement Learning, con-
secutive observations are generally not independent. An agent may remain in
the same region of the environment for a while before it moves on, so consecu-
tive observations will be very correlated. In some cases a replay memory is
used to ensure that the training algorithm gets fairly independent observa-
tions.

Here are a few possible applications of Reinforcement Learning, other than those
mentioned in Chapter 16:

Music personalization

The environment is a user’s personalized web radio. The agent is the software
deciding what song to play next for that user. Its possible actions are to play
any song in the catalog (it must try to choose a song the user will enjoy) or to
play an advertisement (it must try to choose an ad that the user will be inter-
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ested in). It gets a small reward every time the user listens to a song, a larger
reward every time the user listens to an ad, a negative reward when the user
skips a song or an ad, and a very negative reward if the user leaves.

Marketing
The environment is your company’s marketing department. The agent is the
software that defines which customers a mailing campaign should be sent to,
given their profile and purchase history (for each customer it has two possi-
ble actions: send or don’t send). It gets a negative reward for the cost of the
mailing campaign, and a positive reward for estimated revenue generated
from this campaign.

Product delivery
Let the agent control a fleet of delivery trucks, deciding what they should
pick up at the depots, where they should go, what they should drop off, and
so on. They would get positive rewards for each product delivered on time,
and negative rewards for late deliveries.

. When estimating the value of an action, Reinforcement Learning algorithms typ-
ically sum all the rewards that this action led to, giving more weight to immediate
rewards, and less weight to later rewards (considering that an action has more
influence on the near future than on the distant future). To model this, a discount
rate is typically applied at each time step. For example, with a discount rate of 0.9,
a reward of 100 that is received two time steps later is counted as only 0.9% x 100
= 81 when you are estimating the value of the action. You can think of the dis-
count rate as a measure of how much the future is valued relative to the present:
if it is very close to 1, then the future is valued almost as much as the present. If it
is close to 0, then only immediate rewards matter. Of course, this impacts the
optimal policy tremendously: if you value the future, you may be willing to put
up with a lot of immediate pain for the prospect of eventual rewards, while if you
don’t value the future, you will just grab any immediate reward you can find,
never investing in the future.

. To measure the performance of a Reinforcement Learning agent, you can simply
sum up the rewards it gets. In a simulated environment, you can run many epi-
sodes and look at the total rewards it gets on average (and possibly look at the
min, max, standard deviation, and so on).

. The credit assignment problem is the fact that when a Reinforcement Learning
agent receives a reward, it has no direct way of knowing which of its previous
actions contributed to this reward. It typically occurs when there is a large delay
between an action and the resulting rewards (e.g., during a game of Atari’s Pong,
there may be a few dozen time steps between the moment the agent hits the ball
and the moment it wins the point). One way to alleviate it is to provide the agent
with shorter-term rewards, when possible. This usually requires prior knowledge
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about the task. For example, if we want to build an agent that will learn to play
chess, instead of giving it a reward only when it wins the game, we could give it a
reward every time it captures one of the opponent’s pieces.

An agent can often remain in the same region of its environment for a while, so
all of its experiences will be very similar for that period of time. This can intro-
duce some bias in the learning algorithm. It may tune its policy for this region of
the environment, but it will not perform well as soon as it moves out of this
region. To solve this problem, you can use a replay memory; instead of using
only the most immediate experiences for learning, the agent will learn based on a
buffer of its past experiences, recent and not so recent (perhaps this is why we
dream at night: to replay our experiences of the day and better learn from them?).

. An off-policy RL algorithm learns the value of the optimal policy (i.e., the sum of

discounted rewards that can be expected for each state if the agent acts opti-
mally), independently of how the agent actually acts. Q-Learning is a good exam-
ple of such an algorithm. In contrast, an on-policy algorithm learns the value of
the policy that the agent actually executes, including both exploration and exploi-
tation.

For the solutions to exercises 8, 9, and 10, please see the Jupyter notebooks available
at https://github.com/ageron/handson-ml.
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APPENDIX B

Machine Learning Project Checklist

This checklist can guide you through your Machine Learning projects. There are
eight main steps:

© N9

1. Frame the problem and look at the big picture.
2. Get the data.

3.
4

. Prepare the data to better expose the underlying data patterns to Machine Learn-

Explore the data to gain insights.

ing algorithms.

Explore many different models and short-list the best ones.
Fine-tune your models and combine them into a great solution.
Present your solution.

Launch, monitor, and maintain your system.

Obviously, you should feel free to adapt this checklist to your needs.

Frame the Problem and Look at the Big Picture

u

1. Define the objective in business terms.
2. How will your solution be used?

3.
4

. How should you frame this problem (supervised/unsupervised, online/offline,

What are the current solutions/workarounds (if any)?

etc.)?
How should performance be measured?

Is the performance measure aligned with the business objective?
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What would be the minimum performance needed to reach the business objec-
tive?

. What are comparable problems? Can you reuse experience or tools?
. Is human expertise available?

10.
11.
12.

How would you solve the problem manually?
List the assumptions you (or others) have made so far.

Verify assumptions if possible.

Get the Data

Note: automate as much as possible so you can easily get fresh data.

1.
2.
3.

10.
11.

® N AN o

List the data you need and how much you need.

Find and document where you can get that data.

Check how much space it will take.

Check legal obligations, and get authorization if necessary.
Get access authorizations.

Create a workspace (with enough storage space).

Get the data.

Convert the data to a format you can easily manipulate (without changing the
data itself).

Ensure sensitive information is deleted or protected (e.g., anonymized).
Check the size and type of data (time series, sample, geographical, etc.).

Sample a test set, put it aside, and never look at it (no data snooping!).

Explore the Data

Note: try to get insights from a field expert for these steps.

1.

Create a copy of the data for exploration (sampling it down to a manageable size
if necessary).

. Create a Jupyter notebook to keep a record of your data exploration.

. Study each attribute and its characteristics:

e Name

o Type (categorical, int/float, bounded/unbounded, text, structured, etc.)
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% of missing values
« Noisiness and type of noise (stochastic, outliers, rounding errors, etc.)
o Possibly useful for the task?

« Type of distribution (Gaussian, uniform, logarithmic, etc.)

For supervised learning tasks, identify the target attribute(s).
Visualize the data.

Study the correlations between attributes.

Study how you would solve the problem manually.

Identify the promising transformations you may want to apply.

¥ ® NS o

Identify extra data that would be useful (go back to “Get the Data” on page 498).

10. Document what you have learned.

Prepare the Data
Notes:
» Work on copies of the data (keep the original dataset intact).
+ Write functions for all data transformations you apply, for five reasons:
— So you can easily prepare the data the next time you get a fresh dataset
— So you can apply these transformations in future projects
— To clean and prepare the test set
— To clean and prepare new data instances once your solution is live

— To make it easy to treat your preparation choices as hyperparameters

1. Data cleaning:

o Fix or remove outliers (optional).

o Fill in missing values (e.g., with zero, mean, median...) or drop their rows (or
columns).

2. Feature selection (optional):
« Drop the attributes that provide no useful information for the task.
3. Feature engineering, where appropriate:

o Discretize continuous features.
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» Decompose features (e.g., categorical, date/time, etc.).
 Add promising transformations of features (e.g., log(x), sqrt(x), x/2, etc.).

o Aggregate features into promising new features.

4. Feature scaling: standardize or normalize features.

Short-List Promising Models

Notes:

o If the data is huge, you may want to sample smaller training sets so you can train
many different models in a reasonable time (be aware that this penalizes complex
models such as large neural nets or Random Forests).

 Once again, try to automate these steps as much as possible.

1. Train many quick and dirty models from different categories (e.g., linear, naive
Bayes, SVM, Random Forests, neural net, etc.) using standard parameters.

2. Measure and compare their performance.

o For each model, use N-fold cross-validation and compute the mean and stan-
dard deviation of the performance measure on the N folds.

3. Analyze the most significant variables for each algorithm.
4. Analyze the types of errors the models make.

« What data would a human have used to avoid these errors?

5. Have a quick round of feature selection and engineering.
6. Have one or two more quick iterations of the five previous steps.

7. Short-list the top three to five most promising models, preferring models that
make different types of errors.

Fine-Tune the System

Notes:

 You will want to use as much data as possible for this step, especially as you move
toward the end of fine-tuning.

o As always automate what you can.
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1. Fine-tune the hyperparameters using cross-validation.

o Treat your data transformation choices as hyperparameters, especially when
you are not sure about them (e.g., should I replace missing values with zero or
with the median value? Or just drop the rows?).

o Unless there are very few hyperparameter values to explore, prefer random
search over grid search. If training is very long, you may prefer a Bayesian
optimization approach (e.g., using Gaussian process priors, as described by
Jasper Snoek, Hugo Larochelle, and Ryan Adams).!

2. Try Ensemble methods. Combining your best models will often perform better
than running them individually.

3. Once you are confident about your final model, measure its performance on the
test set to estimate the generalization error.

Don't tweak your model after measuring the generalization error:
you would just start overfitting the test set.

Present Your Solution

1. Document what you have done.

2. Create a nice presentation.
« Make sure you highlight the big picture first.

3. Explain why your solution achieves the business objective.

4. Don'’t forget to present interesting points you noticed along the way.
« Describe what worked and what did not.

o List your assumptions and your system’s limitations.

5. Ensure your key findings are communicated through beautiful visualizations or
easy-to-remember statements (e.g., “the median income is the number-one pre-
dictor of housing prices”).

1 “Practical Bayesian Optimization of Machine Learning Algorithms,” J. Snoek, H. Larochelle, R. Adams (2012).
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Launch!

1. Get your solution ready for production (plug into production data inputs, write
unit tests, etc.).

2. Write monitoring code to check your system’s live performance at regular inter-
vals and trigger alerts when it drops.
» Beware of slow degradation too: models tend to “rot” as data evolves.

» Measuring performance may require a human pipeline (e.g., via a crowdsourc-
ing service).

« Also monitor your inputs’ quality (e.g., a malfunctioning sensor sending ran-
dom values, or another team’s output becoming stale). This is particularly
important for online learning systems.

3. Retrain your models on a regular basis on fresh data (automate as much as possi-

ble).
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APPENDIX C
SVM Dual Problem

To understand duality, you first need to understand the Lagrange multipliers method.
The general idea is to transform a constrained optimization objective into an uncon-
strained one, by moving the constraints into the objective function. Let’s look at a
simple example. Suppose you want to find the values of x and y that minimize the
function f(x,y) = x* + 2y, subject to an equality constraint: 3x + 2y + 1 = 0. Using the
Lagrange multipliers method, we start by defining a new function called the Lagran-
gian (or Lagrange function): g(x, y, a) = flx, y) - a(3x + 2y + 1). Each constraint (in
this case just one) is subtracted from the original objective, multiplied by a new vari-
able called a Lagrange multiplier.

Joseph-Louis Lagrange showed that if (x, ) is a solution to the constrained optimiza-
tion problem, then there must exist an & such that (%, y, &) is a stationary point of the
Lagrangian (a stationary point is a point where all partial derivatives are equal to
zero). In other words, we can compute the partial derivatives of g(x, y, &) with regards
to x, y, and a; we can find the points where these derivatives are all equal to zero; and
the solutions to the constrained optimization problem (if they exist) must be among
these stationary points.

%g(x, y,0) =2x—3a
In this example the partial derivatives are: % g(x, y,a) =2 -2«

9
8%y, a) = =3x-2y-1

When all these partial derivatives are equal to 0, we find that
2X-3a=2-2a=-3x-2y—-1=0, from which we can easily find that x = %,

~

y=- %, and a = 1. This is the only stationary point, and as it respects the con-

straint, it must be the solution to the constrained optimization problem.
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However, this method applies only to equality constraints. Fortunately, under some
regularity conditions (which are respected by the SVM objectives), this method can
be generalized to inequality constraints as well (e.g., 3x + 2y + 1 > 0). The generalized
Lagrangian for the hard margin problem is given by Equation C-1, where the a® vari-
ables are called the Karush-Kuhn-Tucker (KKT) multipliers, and they must be greater
or equal to zero.

Equation C-1. Generalized Lagrangian for the hard margin problem

L (w,b,a) = %WT CW— 'gla(i)(t(i)(wT x® 4 b) - 1)
i<

with a? >0 fori=1,2,---,m

Just like with the Lagrange multipliers method, you can compute the partial deriva-
tives and locate the stationary points. If there is a solution, it will necessarily be

among the stationary points (ﬁ, b, o?) that respect the KKT conditions:

o Respect the problem’s constraints: t(i)((W)T xD oy I;) >1 fori=1,2,--,m,
o Verify aD>0 fori=1,2,--,m,

« Either @” = 0 or the i™ constraint must be an active constraint, meaning it must
hold by equality: t(i)((W)T xW b) = 1. This condition is called the complemen-

tary slackness condition. It implies that either &% = 0 or the i*" instance lies on the
boundary (it is a support vector).

Note that the KKT conditions are necessary conditions for a stationary point to be a
solution of the constrained optimization problem. Under some conditions, they are
also sufficient conditions. Luckily, the SVM optimization problem happens to meet
these conditions, so any stationary point that meets the KKT conditions is guaranteed
to be a solution to the constrained optimization problem.

We can compute the partial derivatives of the generalized Lagrangian with regards to
w and b with Equation C-2.

Equation C-2. Partial derivatives of the generalized Lagrangian

m o o o
VWL%(W, b) (X) =W — z (X(Z)t(l)x(l)
i£1
9 $ (), (0)
%Sﬁ(w,b,a) = —igl(x t
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When these partial derivatives are equal to 0, we have Equation C-3.

Equation C-3. Properties of the stationary points

o~

W =

PONONO
1

IIM§

M) = g

I3
S

i=1
If we plug these results into the definition of the generalized Lagrangian, some terms
disappear and we find Equation C-4.

Equation C-4. Dual form of the SVM problem

N m m T .
rz(w,b,a):%z z ONUNCHUNCLNG R
i=1j= i

with a? >0 fori= 1,2,---,m

The goal is now to find the vector & that minimizes this function, with & > 0 for all
instances. This constrained optimization problem is the dual problem we were look-
ing for.

Once you find the optimal &, you can compute w using the first line of Equation C-3.
To compute b, you can use the fact that a support vector verifies t(w” - x? + b) = 1,
so if the k™ instance is a support vector (i.e., a; > 0), you can use it to compute
b=1- t(k)(vAvT . x(k)). However, it is often prefered to compute the average over all
support vectors to get a more stable and precise value, as in Equation C-5.

Equation C-5. Bias term estimation using the dual form

~ m .
b B -0
FLON
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APPENDIX D
Autodiff

This appendix explains how TensorFlow’s autodiff feature works, and how it com-
pares to other solutions.

Suppose you define a function f(x,y) = x>y + y + 2, and you need its partial derivatives

% and %, typically to perform Gradient Descent (or some other optimization algo-
rithm). Your main options are manual differentiation, symbolic differentiation,
numerical differentiation, forward-mode autodiff, and finally reverse-mode autodiff.

TensorFlow implements this last option. Let’s go through each of these options.

Manual Differentiation

The first approach is to pick up a pencil and a piece of paper and use your calculus
knowledge to derive the partial derivatives manually. For the function f(x,y) just
defined, it is not too hard; you just need to use five rules:

o The derivative of a constant is 0.

o The derivative of Ax is A (where A is a constant).

o The derivative of x* is Ax* -, so the derivative of x? is 2x.

« The derivative of a sum of functions is the sum of these functions” derivatives.

« The derivative of A times a function is A times its derivative.
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From these rules, you can derive Equation D-1:

Equation D-1. Partial derivatives of f(x,y)

of ¥y a8y a2 9
ox  ox +8_§c/+$_y ox

ﬂ_a(x_zy) dy 92 _ 2 _ 2
dy  dy dy Oy

+0+0=2xy

This approach can become very tedious for more complex functions, and you run the
risk of making mistakes. The good news is that deriving the mathematical equations
for the partial derivatives like we just did can be automated, through a process called
symbolic differentiation.

Symbolic Differentiation

Figure D-1 shows how symbolic differentiation works on an even simpler function,
g(x,y) = 5 + xy. The graph for that function is represented on the left. After symbolic
differentiation, we get the graph on the right, which represents the partial derivative
g—i =0+ (0xx+yx1)=y (we could similarly obtain the partial derivative with
regards to y).

Figure D-1. Symbolic differentiation

The algorithm starts by getting the partial derivative of the leaf nodes. The constant
node (5) returns the constant 0, since the derivative of a constant is always 0. The
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0x

variable x returns the constant 1 since = = 1, and the variable y returns the constant
0 since % = 0 (if we were looking for the partial derivative with regards to y, it would

be the reverse).

Now we have all we need to move up the graph to the multiplication node in function

g Calculus tells us that the derivative of the product of two functions u and v is
ouxv) _ ov ou

5 = 3p X U+ 3; X u. We can therefore construct a large part of the graph on the

right, representing 0 x x + y x 1.

Finally, we can go up to the addition node in function g. As mentioned, the derivative
of a sum of functions is the sum of these functions’ derivatives. So we just need to
create an addition node and connect it to the parts of the graph we have already com-

puted. We get the correct partial derivative: g—i =0+ (0xx+yx]l).

However, it can be simplified (a lot). A few trivial pruning steps can be applied to this
graph to get rid of all unnecessary operations, and we get a much smaller graph with

. og
just one node: 5 = y.

In this case, simplification is fairly easy, but for a more complex function, symbolic
differentiation can produce a huge graph that may be tough to simplify and lead to
suboptimal performance. Most importantly, symbolic differentiation cannot deal with
functions defined with arbitrary code—for example, the following function discussed
in Chapter 9:
def my_func(a, b):
z =0
for 1 in range(100):
z =a *np.cos(z + 1) + z * np.sin(b - 1)
return z

Numerical Differentiation

The simplest solution is to compute an approximation of the derivatives, numerically.
Recall that the derivative /(x,) of a function h(x) at a point x, is the slope of the func-
tion at that point, or more precisely Equation D-2.

Equation D-2. Derivative of a function h(x) at point x,
h(x) - h(x,
W(x) = lim ()—(0)

X=X, X=X

lim
e—>0 €
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So if we want to calculate the partial derivative of f(x,y) with regards to x, at x = 3 and
y = 4, we can simply compute f(3 + ¢ 4) - f(3, 4) and divide the result by ¢, using a
very small value for e. That’s exactly what the following code does:

def f(x, y):
return x**2*y +y + 2

def derivative(f, x, y, x_eps, y_eps):
return (f(x + x_eps, y + y_eps) - f(x, y)) / (x_eps + y_eps)

df_dx
df_dy

derivative(f, 3, 4, 0.00001, 0)
derivative(f, 3, 4, 0, 0.00001)

Unfortunately, the result is imprecise (and it gets worse for more complex functions).
The correct results are respectively 24 and 10, but instead we get:

>>> print(df_dx)

24.000039999805264

>>> print(df_dy)
10.000000000331966

Notice that to compute both partial derivatives, we have to call f() at least three times
(we called it four times in the preceding code, but it could be optimized). If there
were 1,000 parameters, we would need to call f() at least 1,001 times. When you are
dealing with large neural networks, this makes numerical differentiation way too
inefficient.

However, numerical differentiation is so simple to implement that it is a great tool to
check that the other methods are implemented correctly. For example, if it disagrees
with your manually derived function, then your function probably contains a mis-
take.

Forward-Mode Autodiff

Forward-mode autodiff is neither numerical differentiation nor symbolic differentia-
tion, but in some ways it is their love child. It relies on dual numbers, which are
(weird but fascinating) numbers of the form a + be where a and b are real numbers
and ¢ is an infinitesimal number such that € = 0 (but € # 0). You can think of the
dual number 42 + 24€ as something akin to 42.0000---000024 with an infinite num-
ber of 0s (but of course this is simplified just to give you some idea of what dual num-
bers are). A dual number is represented in memory as a pair of floats. For example, 42
+ 24eis represented by the pair (42.0, 24.0).
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Dual numbers can be added, multiplied, and so on, as shown in Equation D-3.

Equation D-3. A few operations with dual numbers

Ma + be) = da + Abe
(a+be)+(c+de)=(a+c)+(b+de

(a+be) x (c+de) =ac+ (ad + bc)e + (bd)e2 =ac+ (ad + bc)e

Most importantly, it can be shown that h(a + be) = h(a) + b x W (a)€, so computing
h(a + €) gives you both h(a) and the derivative //(a) in just one shot. Figure D-2
shows how forward-mode autodiff computes the partial derivative of f(x,y) with
regards to x at x = 3 and y = 4. All we need to do is compute f(3 + ¢ 4); this will
output a dual number whose first component is equal to f(3, 4) and whose second

\ f(3,4) = 42

X (3,4) =24
oX

component is equal to %(3, 4).

42 + 24¢

a+be withe?=0

stored as a pair of floats (a, b)
e.g., (42.0, 24.0), not as
42.000024

Figure D-2. Forward-mode autodiff
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To compute %(3, 4) we would have to go through the graph again, but this time with
x=3andy=4+e

So forward-mode autodiff is much more accurate than numerical differentiation, but
it suffers from the same major flaw: if there were 1,000 parameters, it would require
1,000 passes through the graph to compute all the partial derivatives. This is where
reverse-mode autodiff shines: it can compute all of them in just two passes through
the graph.

Reverse-Mode Autodiff

Reverse-mode autodiff is the solution implemented by TensorFlow. It first goes
through the graph in the forward direction (i.e., from the inputs to the output) to
compute the value of each node. Then it does a second pass, this time in the reverse
direction (i.e., from the output to the inputs) to compute all the partial derivatives.
Figure D-3 represents the second pass. During the first pass, all the node values were
computed, starting from x = 3 and y = 4. You can see those values at the bottom right
of each node (e.g., x x x = 9). The nodes are labeled n, to n, for clarity. The output
node is n,: f(3,4) = n, = 42.

Figure D-3. Reverse-mode autodiff
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The idea is to gradually go down the graph, computing the partial derivative of f(x,y)
with regards to each consecutive node, until we reach the variable nodes. For this,
reverse-mode autodiff relies heavily on the chain rule, shown in Equation D-4.

Equation D-4. Chain rule

of _of
ox an E)x

of _q,

Since n;, is the output node, f = n, so trivially -
7

Let’s continue down the graph to n;: how much does f vary when n; varies? The

of _of

answer is an an

n
—L We already know that 5 f ~ 1, 5o all we need is a—n7 Since
ony 5

an
n, simply performs the sum n; + ng, we find that — a"s =1,s0 a’{s =1x1=1.

Now we can proceed to node n,;: how much does f vary when n, varies? The answer is

of _of "s of _ -
Iy = g X a Since n; = n, X n,, we find that =— Ty =1, 50 g = 1xn,=4
The process continues until we reach the bottom of the graph. At that point we will

have calculated all the partial derivatives of f(x,y) at the point x = 3 and y = 4. In this
example, we find % =24 and % = 10. Sounds about right!

Reverse-mode autodiff is a very powerful and accurate technique, especially when
there are many inputs and few outputs, since it requires only one forward pass plus
one reverse pass per output to compute all the partial derivatives for all outputs with
regards to all the inputs. Most importantly, it can deal with functions defined by arbi-
trary code. It can also handle functions that are not entirely differentiable, as long as
you ask it to compute the partial derivatives at points that are differentiable.

If you implement a new type of operation in TensorFlow and you
want to make it compatible with autodiff, then you need to provide
a function that builds a subgraph to compute its partial derivatives
with regards to its inputs. For example, suppose you implement a
function that computes the square of its input f{x) = x2. In that case
you would need to provide the corresponding derivative function f
(x) = 2x. Note that this function does not compute a numerical
result, but instead builds a subgraph that will (later) compute the
result. This is very useful because it means that you can compute
gradients of gradients (to compute second-order derivatives, or
even higher-order derivatives).
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APPENDIX E
Other Popular ANN Architectures

In this appendix we will give a quick overview of a few historically important neural
network architectures that are much less used today than deep Multi-Layer Percep-
trons (Chapter 10), convolutional neural networks (Chapter 13), recurrent neural
networks (Chapter 14), or autoencoders (Chapter 15). They are often mentioned in
the literature, and some are still used in many applications, so it is worth knowing
about them. Moreover, we will discuss deep belief nets (DBNs), which were the state of
the art in Deep Learning until the early 2010s. They are still the subject of very active
research, so they may well come back with a vengeance in the near future.

Hopfield Networks

Hopfield networks were first introduced by W. A. Little in 1974, then popularized by J.
Hopfield in 1982. They are associative memory networks: you first teach them some
patterns, and then when they see a new pattern they (hopefully) output the closest
learned pattern. This has made them useful in particular for character recognition
before they were outperformed by other approaches. You first train the network by
showing it examples of character images (each binary pixel maps to one neuron), and
then when you show it a new character image, after a few iterations it outputs the
closest learned character.

They are fully connected graphs (see Figure E-1); that is, every neuron is connected
to every other neuron. Note that on the diagram the images are 6 x 6 pixels, so the
neural network on the left should contain 36 neurons (and 648 connections), but for
visual clarity a much smaller network is represented.
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Figure E-1. Hopfield network

The training algorithm works by using Hebb’s rule: for each training image, the
weight between two neurons is increased if the corresponding pixels are both on or
both off, but decreased if one pixel is on and the other is off.

To show a new image to the network, you just activate the neurons that correspond to
active pixels. The network then computes the output of every neuron, and this gives
you a new image. You can then take this new image and repeat the whole process.
After a while, the network reaches a stable state. Generally, this corresponds to the
training image that most resembles the input image.

A so-called energy function is associated with Hopfield nets. At each iteration, the
energy decreases, so the network is guaranteed to eventually stabilize to a low-energy
state. The training algorithm tweaks the weights in a way that decreases the energy
level of the training patterns, so the network is likely to stabilize in one of these low-
energy configurations. Unfortunately, some patterns that were not in the training set
also end up with low energy, so the network sometimes stabilizes in a configuration
that was not learned. These are called spurious patterns.

Another major flaw with Hopfield nets is that they don’t scale very well—their mem-
ory capacity is roughly equal to 14% of the number of neurons. For example, to clas-
sify 28 x 28 images, you would need a Hopfield net with 784 fully connected neurons
and 306,936 weights. Such a network would only be able to learn about 110 different
characters (14% of 784). That’s a lot of parameters for such a small memory.

Boltzmann Machines

Boltzmann machines were invented in 1985 by Geoffrey Hinton and Terrence Sejnow-
ski. Just like Hopfield nets, they are fully connected ANNs, but they are based on sto-

516 | Appendix E: Other Popular ANN Architectures



chastic neurons: instead of using a deterministic step function to decide what value to
output, these neurons output 1 with some probability, and 0 otherwise. The probabil-
ity function that these ANNs use is based on the Boltzmann distribution (used in
statistical mechanics) hence their name. Equation E-1 gives the probability that a par-
ticular neuron will output a 1.

Equation E-1. Probability that the i neuron will output 1

L]

p(sgnext step) _ 1) = a 7

W, .s.+bl.)

o s;is the j" neuron’s state (0 or 1).
+ w,; is the connection weight between the i and j* neurons. Note that w;; = 0.

o b, is the i neuron’s bias term. We can implement this term by adding a bias neu-
ron to the network.

o Nis the number of neurons in the network.

o T is a number called the networK’s temperature; the higher the temperature, the
more random the output is (i.e., the more the probability approaches 50%).

o ois the logistic function.
Neurons in Boltzmann machines are separated into two groups: visible units and hid-

den units (see Figure E-2). All neurons work in the same stochastic way, but the visi-
ble units are the ones that receive the inputs and from which outputs are read.

Visible - Hidden

Figure E-2. Boltzmann machine
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Because of its stochastic nature, a Boltzmann machine will never stabilize into a fixed
configuration, but instead it will keep switching between many configurations. If it is
left running for a sufficiently long time, the probability of observing a particular con-
figuration will only be a function of the connection weights and bias terms, not of the
original configuration (similarly, after you shuffle a deck of cards for long enough, the
configuration of the deck does not depend on the initial state). When the network
reaches this state where the original configuration is “forgotten,” it is said to be in
thermal equilibrium (although its configuration keeps changing all the time). By set-
ting the network parameters appropriately, letting the network reach thermal equili-
brium, and then observing its state, we can simulate a wide range of probability
distributions. This is called a generative model.

Training a Boltzmann machine means finding the parameters that will make the net-
work approximate the training set’s probability distribution. For example, if there are
three visible neurons and the training set contains 75% (0, 1, 1) triplets, 10% (0, 0, 1)
triplets, and 15% (1, 1, 1) triplets, then after training a Boltzmann machine, you could
use it to generate random binary triplets with about the same probability distribu-
tion. For example, about 75% of the time it would output the (0, 1, 1) triplet.

Such a generative model can be used in a variety of ways. For example, if it is trained
on images, and you provide an incomplete or noisy image to the network, it will
automatically “repair” the image in a reasonable way. You can also use a generative
model for classification. Just add a few visible neurons to encode the training image’s
class (e.g., add 10 visible neurons and turn on only the fifth neuron when the training
image represents a 5). Then, when given a new image, the network will automatically
turn on the appropriate visible neurons, indicating the image’s class (e.g., it will turn
on the fifth visible neuron if the image represents a 5).

Unfortunately, there is no efficient technique to train Boltzmann machines. However,
fairly efficient algorithms have been developed to train restricted Boltzmann machines
(RBM).

Restricted Boltzmann Machines

An RBM is simply a Boltzmann machine in which there are no connections between
visible units or between hidden units, only between visible and hidden units. For
example, Figure E-3 represents an RBM with three visible units and four hidden
units.
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Figure E-3. Restricted Boltzmann machine

A very efficient training algorithm, called Contrastive Divergence, was introduced in
2005 by Miguel A. Carreira-Perpifidn and Geoffrey Hinton.! Here is how it works: for
each training instance x, the algorithm starts by feeding it to the network by setting
the state of the visible units to x;, x,, -+, x,. Then you compute the state of the hidden
units by applying the stochastic equation described before (Equation E-1). This gives
you a hidden vector h (where A; is equal to the state of the i unit). Next you compute
the state of the visible units, by applying the same stochastic equation. This gives you
a vector x. Then once again you compute the state of the hidden units, which gives
you a vector h. Now you can update each connection weight by applying the rule in
Equation E-2.

Equation E-2. Contrastive divergence weight update

WI(_r}ext step) _ W, + W(XhT _ XhT)
The great benefit of this algorithm it that it does not require waiting for the network
to reach thermal equilibrium: it just goes forward, backward, and forward again, and
that’s it. This makes it incomparably more efficient than previous algorithms, and it

was a key ingredient to the first success of Deep Learning based on multiple stacked
RBM:s.

Deep Belief Nets

Several layers of RBMs can be stacked; the hidden units of the first-level RBM serves
as the visible units for the second-layer RBM, and so on. Such an RBM stack is called
a deep belief net (DBN).

Yee-Whye Teh, one of Geoffrey Hinton’s students, observed that it was possible to
train DBNs one layer at a time using Contrastive Divergence, starting with the lower

1 “On Contrastive Divergence Learning,” M. A. Carreira-Perpifian and G. Hinton (2005).
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layers and then gradually moving up to the top layers. This led to the groundbreaking
article that kickstarted the Deep Learning tsunami in 2006.2

Just like RBMs, DBNs learn to reproduce the probability distribution of their inputs,
without any supervision. However, they are much better at it, for the same reason that
deep neural networks are more powerful than shallow ones: real-world data is often
organized in hierarchical patterns, and DBNs take advantage of that. Their lower lay-
ers learn low-level features in the input data, while higher layers learn high-level fea-
tures.

Just like RBMs, DBNs are fundamentally unsupervised, but you can also train them
in a supervised manner by adding some visible units to represent the labels. More-
over, one great feature of DBNs is that they can be trained in a semisupervised fash-
ion. Figure E-4 represents such a DBN configured for semisupervised learning.

Figure E-4. A deep belief network configured for semisupervised learning

First, the RBM 1 is trained without supervision. It learns low-level features in the
training data. Then RBM 2 is trained with RBM 1’s hidden units as inputs, again
without supervision: it learns higher-level features (note that RBM 2’s hidden units
include only the three rightmost units, not the label units). Several more RBMs could
be stacked this way, but you get the idea. So far, training was 100% unsupervised.

2 “A Fast Learning Algorithm for Deep Belief Nets,” G. Hinton, S. Osindero, Y. Teh (2006).
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Lastly, RBM 3 is trained using both RBM 2’s hidden units as inputs, as well as extra
visible units used to represent the target labels (e.g., a one-hot vector representing the
instance class). It learns to associate high-level features with training labels. This is
the supervised step.

At the end of training, if you feed RBM 1 a new instance, the signal will propagate up
to RBM 2, then up to the top of RBM 3, and then back down to the label units; hope-
fully, the appropriate label will light up. This is how a DBN can be used for classifica-
tion.

One great benefit of this semisupervised approach is that you dont need much
labeled training data. If the unsupervised RBMs do a good enough job, then only a
small amount of labeled training instances per class will be necessary. Similarly, a
baby learns to recognize objects without supervision, so when you point to a chair
and say “chair,” the baby can associate the word “chair” with the class of objects it has
already learned to recognize on its own. You don’t need to point to every single chair
and say “chair”; only a few examples will suffice (just enough so the baby can be sure
that you are indeed referring to the chair, not to its color or one of the chair’s parts).

Quite amazingly, DBNs can also work in reverse. If you activate one of the label units,
the signal will propagate up to the hidden units of RBM 3, then down to RBM 2, and
then RBM 1, and a new instance will be output by the visible units of RBM 1. This
new instance will usually look like a regular instance of the class whose label unit you
activated. This generative capability of DBNs is quite powerful. For example, it has
been used to automatically generate captions for images, and vice versa: first a DBN is
trained (without supervision) to learn features in images, and another DBN is trained
(again without supervision) to learn features in sets of captions (e.g., “car” often
comes with “automobile”). Then an RBM is stacked on top of both DBNs and trained
with a set of images along with their captions; it learns to associate high-level features
in images with high-level features in captions. Next, if you feed the image DBN an
image of a car, the signal will propagate through the network, up to the top-level
RBM, and back down to the bottom of the caption DBN, producing a caption. Due to
the stochastic nature of RBMs and DBNS, the caption will keep changing randomly,
but it will generally be appropriate for the image. If you generate a few hundred cap-
tions, the most frequently generated ones will likely be a good description of the
image.?

Self-Organizing Maps

Self-organizing maps (SOM) are quite different from all the other types of neural net-
works we have discussed so far. They are used to produce a low-dimensional repre-

3 See this video by Geoffrey Hinton for more details and a demo: http://goo.gl/7Z5QiS.
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sentation of a high-dimensional dataset, generally for visualization, clustering, or
classification. The neurons are spread across a map (typically 2D for visualization,
but it can be any number of dimensions you want), as shown in Figure E-5, and each
neuron has a weighted connection to every input (note that the diagram shows just
two inputs, but there are typically a very large number, since the whole point of
SOM:s is to reduce dimensionality).

Figure E-5. Self-organizing maps

Once the network is trained, you can feed it a new instance and this will activate only
one neuron (i.e., hence one point on the map): the neuron whose weight vector is
closest to the input vector. In general, instances that are nearby in the original input
space will activate neurons that are nearby on the map. This makes SOMs useful for
visualization (in particular, you can easily identify clusters on the map), but also for
applications like speech recognition. For example, if each instance represents the
audio recording of a person pronouncing a vowel, then different pronunciations of
the vowel “a” will activate neurons in the same area of the map, while instances of the
vowel “¢” will activate neurons in another area, and intermediate sounds will gener-

ally activate intermediate neurons on the map.

One important difference with the other dimensionality reduction
techniques discussed in Chapter 8 is that all instances get mapped
to a discrete number of points in the low-dimensional space (one
point per neuron). When there are very few neurons, this techni-
que is better described as clustering rather than dimensionality
reduction.
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The training algorithm is unsupervised. It works by having all the neurons compete
against each other. First, all the weights are initialized randomly. Then a training
instance is picked randomly and fed to the network. All neurons compute the dis-
tance between their weight vector and the input vector (this is very different from the
artificial neurons we have seen so far). The neuron that measures the smallest dis-
tance wins and tweaks its weight vector to be even slightly closer to the input vector,
making it more likely to win future competitions for other inputs similar to this one.
It also recruits its neighboring neurons, and they too update their weight vector to be
slightly closer to the input vector (but they don't update their weights as much as the
winner neuron). Then the algorithm picks another training instance and repeats the
process, again and again. This algorithm tends to make nearby neurons gradually
specialize in similar inputs.*

4 You can imagine a class of young children with roughly similar skills. One child happens to be slightly better
at basketball. This motivates her to practice more, especially with her friends. After a while, this group of
friends gets so good at basketball that other kids cannot compete. But that’s okay, because the other kids spe-
cialize in other topics. After a while, the class is full of little specialized groups.
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degrees of freedom, 27, 126
denoising autoencoders, 424-425
depth concat layer, 369
depth radius, 368
depthwise_conv2d(), 376
dequeue(), 332
dequeue_many(), 332, 334
dequeue_up_to(), 333-334
dequeuing data, 331
describe(), 46
device blocks, 327
device(), 319
dimensionality reduction, 12, 205-225, 411
approaches to
Manifold Learning, 210
projection, 207-209
choosing the right number of dimensions,
215
curse of dimensionality, 205-207

and data visualization, 205
Isomap, 224
LLE (Locally Linear Embedding), 221-223
Multidimensional Scaling, 223-224
PCA (Principal Component Analysis),
211-218
t-Distributed Stochastic Neighbor Embed-
ding (t-SNE), 224
discount rate, 447
distributed computing, 229
distributed sessions, 328-329
DNNClassifier, 264
drop(), 60
dropconnect, 307
dropna(), 60
dropout, 272, 399
dropout rate, 304
dropout(), 306
DropoutWrapper, 399
DRY (Don’t Repeat Yourself), 247
Dual Averaging, 300
dual numbers, 510
dual problem, 160
duality, 503
dying ReLUs, 279
dynamic placements, 320
dynamic placer, 318
Dynamic Programming, 456
dynamic unrolling through time, 387
dynamic_rnn(), 387, 398, 409

E
early stopping, 133-134, 198, 272, 303
Elastic Net, 132
embedded device blocks, 327
Embedded Reber grammars, 410
embeddings, 405-407
embedding_lookup(), 406
encoder, 412
Encoder-Decoder, 383
end-of-sequence (EOS) token, 388
energy functions, 516
enqueuing data, 330
Ensemble Learning, 70, 74, 181-203
bagging and pasting, 185-188
boosting, 191-200
in-graph versus between-graph replication,
343-345
Random Forests, 189-191

528 | Index



(see also Random Forests)

random patches and random subspaces, 188

stacking, 200-202
entropy impurity measure, 172
environments, in reinforcement learning,
438-447, 459, 464
episodes (in RL), 444, 448-449, 451-452, 469
epochs, 118
e-insensitive, 155
equality contraints, 504
error analysis, 96-99
estimators, 61
Euclidian norm, 39
eval(), 240
evaluating models, 29-31
explained variance, 215
explained variance ratio, 214
exploding gradients, 276
(see also gradients, vanishing and explod-
ing)
exploration policies, 459
exponential decay, 284
exponential linear unit (ELU), 280-281
exponential scheduling, 301
Extra-Trees, 190

F

F-1 score, 86-87

face-recognition, 100

fake X server, 443

false positive rate (FPR), 91-93
fan-in, 277, 279

fan-out, 277, 279

feature detection, 411

feature engineering, 25

feature extraction, 12

feature importance, 190-191

feature maps, 220, 357-360, 374
feature scaling, 65

feature selection, 26, 74, 130, 191, 499
feature space, 218, 220

feature vector, 39, 107, 156, 237
features, 9

FeatureUnion, 66

feedforward neural network (FNN), 263
feed_dict, 240

FIFOQueue, 330, 333

fillna(), 60

first-in first-out (FIFO) queues, 330

first-order partial derivatives (Jacobians), 300
fit(), 61, 66, 217

fitness function, 20

fit_inverse_transform=, 221
fit_transform(), 61, 66

folds, 69, 81, 83-84

Follow The Regularized Leader (FTRL), 300
forget gate, 402

forward-mode autodiff, 510-512

framing a problem, 35-37

frozen layers, 289-290

fully_connected(), 267, 278, 284-285, 417

G

game play (see reinforcement learning)

gamma value, 152

gate controllers, 402

Gaussian distribution, 37, 429, 431

Gaussian RBF, 151

Gaussian RBF kernel, 152-153, 163

generalization error, 29

generalized Lagrangian, 504-505

generative autoencoders, 428

generative models, 411, 518

genetic algorithms, 440

geodesic distance, 224

get_variable(), 249-250

GINI impurity, 169, 172

global average pooling, 372

global_step, 466

global_variables(), 308

global_variables_initializer(), 233

Glorot initialization, 276-279

Google, 230

Google Images, 253

Google Photos, 13

GoogleNet architecture, 368-372

gpu_options.per_process_gpu_memory_frac-
tion, 317

gradient ascent, 441

Gradient Boosted Regression Trees (GBRT),
195

Gradient Boosting, 195-200

Gradient Descent (GD), 105, 111-121, 164, 275,
294, 296
algorithm comparisons, 119-121
automatically computing gradients, 238-239
Batch GD, 114-117, 130
defining, 111
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local minimum versus global minimum, 112
manually computing gradients, 237
Mini-batch GD, 119-121, 239-241
optimizer, 239
Stochastic GD, 117-119, 148
with TensorFlow, 237-239
Gradient Tree Boosting, 195
GradientDescentOptimizer, 268
gradients(), 238
gradients, vanishing and exploding, 275-286,
400
Batch Normalization, 282-286
Glorot and He initialization, 276-279
gradient clipping, 286
nonsaturating activation functions, 279-281
graphviz, 168
greedy algorithm, 172
grid search, 71-74, 151
group(), 464
GRU (Gated Recurrent Unit) cell, 404-405

H

hailstone sequence, 412
hard margin classification, 146-147
hard voting classifiers, 181-184
harmonic mean, 86
He initialization, 276-279
Heaviside step function, 257
Hebb's rule, 258, 516
Hebbian learning, 259
hidden layers, 261
hierarchical clustering, 10
hinge loss function, 164
histograms, 47-48
hold-out sets, 200
(see also blenders)
Hopfield Networks, 515-516
hyperbolic tangent (htan activation function),
262,272,276, 278, 381
hyperparameters, 28, 65, 72-74, 76, 111, 151,
154,270
(see also neural network hyperparameters)
hyperplane, 157, 210-211, 213, 224
hypothesis, 39
manifold, 210
hypothesis boosting (see boosting)
hypothesis function, 107
hypothesis, null, 174

I

identity matrix, 128, 160

ILSVRC ImageNet challenge, 365
image classification, 365

impurity measures, 169, 172
in-graph replication, 343
inception modules, 369
Inception-v4, 375

incremental learning, 16, 217
inequality constraints, 504
inference, 22, 311, 363, 408

info(), 45

information gain, 173
information theory, 172

init node, 241

input gate, 402

input neurons, 258
input_put_keep_prob, 399
instance-based learning, 17, 21
InteractiveSession, 233

intercept term, 106

Internal Covariate Shift problem, 282
inter_op_parallelism_threads, 322
intra_op_parallelism_threads, 322
inverse_transform(), 221
in_top_k(), 268

irreducible error, 127

isolated environment, 41-42
Isomap, 224

is_training, 284-285, 399

J

jobs, 323

join(), 325, 339
Jupyter, 40, 42, 48

K

K-fold cross-validation, 69-71, 83
k-Nearest Neighbors, 21, 100
Karush-Kuhn-Tucker (KKT) conditions, 504
keep probability, 306

Keras, 231

Kernel PCA (kPCA), 218-221

kernel trick, 150, 152, 161-164, 218
kernelized SVM, 161-164

kernels, 150-153, 321
Kullback-Leibler divergence, 141, 426
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L

11_12_regularizer(), 303

LabelBinarizer, 66

labels, 8, 37

Lagrange function, 504-505

Lagrange multiplier, 503

landmarks, 151-152

large margin classification, 145-146

Lasso Regression, 130-132

latent loss, 430

latent space, 429

law of large numbers, 183

leaky ReLU, 279

learning rate, 16, 111, 115-118

learning rate scheduling, 118, 300-302

LeNet-5 architecture, 355, 366-367

Levenshtein distance, 153

liblinear library, 153

libsvm library, 154

Linear Discriminant Analysis (LDA), 224

linear models
early stopping, 133-134
Elastic Net, 132
Lasso Regression, 130-132
Linear Regression (see Linear Regression)
regression (see Linear Regression)
Ridge Regression, 127-129, 132
SVM, 145-148

Linear Regression, 20, 68, 105-121, 132
computational complexity, 110
Gradient Descent in, 111-121
learning curves in, 123-127
Normal Equation, 108-110
regularizing models (see regularization)
using Stochastic Gradient Descent (SGD),

119

with TensorFlow, 235-236

linear SVM classification, 145-148

linear threshold units (LTUs), 257

Lipschitz continuous, 113

LLE (Locally Linear Embedding), 221-223

load_sample_images(), 360

local receptive field, 354

local response normalization, 368

local sessions, 328

location invariance, 363

log loss, 136

logging placements, 320-320

logistic function, 134

Logistic Regression, 9, 134-142
decision boundaries, 136-139
estimating probablities, 134-135
Softmax Regression model, 139-142
training and cost function, 135-136

log_device_placement, 320

LSTM (Long Short-Term Memory) cell,
401-405

M

machine control (see reinforcement learning)
Machine Learning
large-scale projects (see TensorFlow)
notations, 38-39
process example, 33-77
project checklist, 35, 497-502
resources on, xvi-xvii
uses for, xiii-xiv
Machine Learning basics
attributes, 9
challenges, 22-29
algorithm problems, 26-28
training data problems, 25
definition, 4
features, 9
overview, 3
reasons for using, 4-7
spam filter example, 4-6
summary, 28
testing and validating, 29-31
types of systems, 7-22
batch and online learning, 14-17
instance-based versus model-based
learning, 17-22
supervised/unsupervised learning, 8-14
workflow example, 18-22
machine translation (see natural language pro-
cessing (NLP))
make(), 442
Manbhattan norm, 39
manifold assumption/hypothesis, 210
Manifold Learning, 210, 221
(see also LLE (Locally Linear Embedding)
MapReduce, 37
margin violations, 147
Markov chains, 453
Markov decision processes, 453-457
master service, 325
Matplotlib, 40, 48, 91, 97
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max margin learning, 293
max pooling layer, 363
max-norm regularization, 307-308
max_normy(), 308
max_norm_regularizer(), 308
max_pool(), 364
Mean Absolute Error (MAE), 39-40
mean coding, 429
Mean Square Error (MSE), 107, 237, 426
measure of similarity, 17
memmap, 217
memory cells, 346, 382
Mercer's theorem, 163
meta learner (see blending)
min-max scaling, 65
Mini-batch Gradient Descent, 119-121, 136,
239-241
mini-batches, 15
minimize(), 286, 289, 449, 466
min_after_dequeue, 333
MNIST dataset, 79-81
model parallelism, 345-347
model parameters, 114, 116, 133, 156, 159, 234,
268, 389
defining, 19
model selection, 19
model zoos, 291
model-based learning, 18-22
models
analyzing, 74-75
evaluating on test set, 75-76
moments, 298
Momentum optimization, 294-295
Monte Carlo tree search, 453
Multi-Layer Perceptrons (MLP), 253, 260-263,
446
training with TE.Learn, 264
multiclass classifiers, 93-96
Multidimensional Scaling (MDS), 223
multilabel classifiers, 100-101
Multinomial Logistic Regression (see Softmax
Regression)
multinomial(), 446
multioutput classifiers, 101-102
MultiRNNCell, 398
multithreaded readers, 338-340
multivariate regression, 37

N

naive Bayes classifiers, 94
name scopes, 245
natural language processing (NLP), 379,
405-410
encoder-decoder network for machine
translation, 407-410
TensorFlow tutorials, 405, 408
word embeddings, 405-407
Nesterov Accelerated Gradient (NAG), 295-296
Nesterov momentum optimization, 295-296
network topology, 270
neural network hyperparameters, 270-272
activation functions, 272
neurons per hidden layer, 272
number of hidden layers, 270-271
neural network policies, 444-447
neurons
biological, 254-256
logical computations with, 256
neuron_layer(), 267
next_batch(), 269
No Free Lunch theorem, 30
node edges, 244
nonlinear dimensionality reduction (NLDR),
221
(see also Kernel PCA; LLE (Locally Linear
Embedding))
nonlinear SVM classification, 149-154
computational complexity, 153
Gaussian RBF kernel, 152-153
with polynomial features, 149-150
polynomial kernel, 150-151
similarity features, adding, 151-152
nonparametric models, 173
nonresponse bias, 25
nonsaturating activation functions, 279-281
normal distribution (see Gaussian distribution)
Normal Equation, 108-110
normalization, 65
normalized exponential, 139
norms, 39
notations, 38-39
NP-Complete problems, 172
null hypothesis, 174
numerical differentiation, 509
NumPy, 40
NumPy arrays, 63
NVidia Compute Capability, 314
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nvidia-smi, 318
n_components, 215

0

observation space, 446
off-policy algorithm, 459
offline learning, 14
one-hot encoding, 63
one-versus-all (OvA) strategy, 94, 141, 165
one-versus-one (OvO) strategy, 94
online learning, 15-17
online SVMs, 164-165
OpenAl Gym, 441-444
operation_timeout_in_ms, 345
Optical Character Recognition (OCR), 3
optimal state value, 455
optimizers, 293-302
AdaGrad, 296-298
Adam optimization, 293, 298-300
Gradient Descent (see Gradient Descent
optimizer)
learning rate scheduling, 300-302
Momentum optimization, 294-295
Nesterov Accelerated Gradient (NAG),
295-296
RMSProp, 298
out-of-bag evaluation, 187-188
out-of-core learning, 16
out-of-memory (OOM) errors, 386
out-of-sample error, 29
OutOfRangeError, 337, 339
output gate, 402
output layer, 261
OutputProjectionWrapper, 392-395
output_put_keep_prob, 399
overcomplete autoencoder, 424
overfitting, 26-28, 49, 147, 152, 173, 176, 272
avoiding through regularization, 302-310

P
p-value, 174
PaddingFIFOQueue, 334
Pandas, 40, 44
scatter_matrix, 56-57
parallel distributed computing, 313-352
data parallelism, 347-351
in-graph versus between-graph replication,
343-345
model parallelism, 345-347

multiple devices across multiple servers,
323-342
asynchronous communication using
queues, 329-334
loading training data, 335-342
master and worker services, 325
opening a session, 325
pinning operations across tasks, 326
sharding variables, 327
sharing state across sessions, 328-329
multiple devices on a single machine,
314-323
control dependencies, 323
installation, 314-316
managing the GPU RAM, 317-318
parallel execution, 321-322
placing operations on devices, 318-321
one neural network per device, 342-343
parameter efficiency, 271
parameter matrix, 139
parameter server (ps), 324
parameter space, 114
parameter vector, 107, 111, 135, 139
parametric models, 173
partial derivative, 114
partial_fit(), 217
Pearson's r, 55
peephole connections, 403
penalties (see rewards, in RL)
percentiles, 46
Perceptron convergence theorem, 259
Perceptrons, 257-264
versus Logistic Regression, 260
training, 258-259
performance measures, 37-40
confusion matrix, 84-86
cross-validation, 83-84
precision and recall, 86-90
ROC (receiver operating characteristic)
curve, 91-93
performance scheduling, 301
permutation(), 49
PG algorithms, 448
photo-hosting services, 13
pinning operations, 326
pip, 41
Pipeline constructor, 66-68
pipelines, 36
placeholder nodes, 239
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placers (see simple placer; dynamic placer)
policy, 440
policy gradients, 441 (see PG algorithms)
policy space, 440
polynomial features, adding, 149-150
polynomial kernel, 150-151, 162
Polynomial Regression, 106, 121-123
learning curves in, 123-127
pooling kernel, 363
pooling layer, 363-365
power scheduling, 301
precision, 85
precision and recall, 86-90
F-1 score, 86-87
precision/recall (PR) curve, 92
precision/recall tradeoff, 87-90
predetermined piecewise constant learning
rate, 301
predict(), 62
predicted class, 85
predictions, 84-86, 156-157, 169-171
predictors, 8, 62
preloading training data, 335
PReLU (parametric leaky ReLU), 279
preprocessed attributes, 48
pretrained layers reuse, 286-293
auxiliary task, 292-293
caching frozen layers, 290
freezing lower layers, 289
model zoos, 291
other frameworks, 288
TensorFlow model, 287-288
unsupervised pretraining, 291-292
upper layers, 290
Pretty Tensor, 231
primal problem, 160
principal component, 212
Principal Component Analysis (PCA), 211-218
explained variance ratios, 214
finding principal components, 212-213
for compression, 216-217
Incremental PCA, 217-218
Kernel PCA (kPCA), 218-221
projecting down to d dimensions, 213
Randomized PCA, 218
Scikit Learn for, 214
variance, preserving, 211-212
probabilistic autoencoders, 428
probabilities, estimating, 134-135, 171

producer functions, 341
projection, 207-209
propositional logic, 254
pruning, 174, 509
Python
isolated environment in, 41-42
notebooks in, 42-43
pickle, 71
pip, 41

Q
Q-Learning algorithm, 458-469
approximate Q-Learning, 460
deep Q-Learning, 460-469
Q-Value Iteration Algorithm, 456
Q-Values, 456
Quadratic Programming (QP) Problems,
159-160
quantizing, 351
queries per second (QPS), 343
QueueRunner, 338-340
queues, 329-334
closing, 333
dequeuing data, 331
enqueuing data, 330
first-in first-out (FIFO), 330
of tuples, 332
PaddingFIFOQueue, 334
RandomShuffleQueue, 333
q_network(), 463

R
Radial Basis Function (RBF), 151
Random Forests, 70-72, 94, 167, 178, 181,
189-191
Extra-Trees, 190
feature importance, 190-191
random initialization, 111, 116, 118, 276
Random Patches and Random Subspaces, 188
randomized leaky ReLU (RReLU), 279
Randomized PCA, 218
randomized search, 74, 270
RandomShuffleQueue, 333, 337
random_uniform(), 237
reader operations, 335
recall, 85
recognition network, 412
reconstruction error, 216
reconstruction loss, 413, 428, 430
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reconstruction pre-image, 220
reconstructions, 413
recurrent neural networks (RNNs), 379-410
deep RNNs, 396-400
exploration policies, 459
GRU cell, 404-405
input and output sequences, 382-383
LSTM cell, 401-405
natural language processing (NLP), 405-410
in TensorFlow, 384-388
dynamic unrolling through time, 387
static unrolling through time, 385-386
variable length input sequences, 387
variable length output sequences, 388
training, 389-396
backpropagation through time (BPTT),
389
creative sequences, 396
sequence classifiers, 389-391
time series predictions, 392-396
recurrent neurons, 380-383
memory cells, 382
reduce_mean(), 268
reduce_sum(), 427-428, 430, 466
regression, 8
Decision Trees, 175-176
regression models
linear, 68
regression versus classification, 101
regularization, 27-28, 30, 127-134
data augmentation, 309-310
Decision Trees, 173-174
dropout, 304-307
early stopping, 133-134, 303
Elastic Net, 132
Lasso Regression, 130-132
max-norm, 307-308
Ridge Regression, 127-129
shrinkage, 197
£ 1 and ¢ 2 regularization, 303-304
REINFORCE algorithms, 448
Reinforcement Learning (RL), 13-14, 437-470
actions, 447-448
credit assignment problem, 447-448
discount rate, 447
examples of, 438
Markov decision processes, 453-457
neural network policies, 444-447
OpenAl gym, 441-444

PG algorithms, 448-453
policy search, 440-441
Q-Learning algorithm, 458-469
rewards, learning to optimize, 438-439
Temporal Difference (TD) Learning,
457-458

ReLU (rectified linear units), 246-248

ReLU activation, 374

ReLU function, 262, 272, 278-281

relu(z), 266

render(), 442

replay memory, 464

replica_device_setter(), 327

request_stop(), 339

reset(), 442

reset_default_graph(), 234

reshape(), 395

residual errors, 195-196

residual learning, 372

residual network (ResNet), 291, 372-375

residual units, 373

ResNet, 372-375

resource containers, 328-329

restore(), 241

restricted Boltzmann machines (RBMs), 13,
291,518

reuse_variables(), 249

reverse-mode autodiff, 512-513

rewards, in RL, 438-439

rgb_array, 443

Ridge Regression, 127-129, 132

RMSProp, 298

ROC (receiver operating characteristic) curve,
91-93

Root Mean Square Error (RMSE), 37-40, 107

RReLU (randomized leaky ReLU), 279

run(), 233, 345

S

Sampled Softmax, 409

sampling bias, 24-25, 51

sampling noise, 24

save(), 241

Saver node, 241

Scikit Flow, 231

Scikit-Learn, 40
about, xiv
bagging and pasting in, 186-187
CART algorithm, 170-171, 176
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cross-validation, 69-71

design principles, 61-62

imputer, 60-62

LinearSVR class, 156

MinMaxScaler, 65

min_ and max_ hyperparameters, 173

PCA implementation, 214

Perceptron class, 259

Pipeline constructor, 66-68, 149

Randomized PCA, 218

Ridge Regression with, 129

SAMME, 195

SGDClassifier, 82, 87-88, 94

SGDRegressor, 119

sklearn.base.BaseEstimator, 64, 67, 84

sklearn.base.clone(), 83, 133

sklearn.base. TransformerMixin, 64, 67

sklearn.datasets.fetch_california_housing(),
236

sklearn.datasets.fetch_mldata(), 79

sklearn.datasets.load_iris(), 137, 148, 167,
190, 259

sklearn.datasets.load_sample_images(),
360-361

sklearn.datasets.make_moons(), 149, 178

sklearn.decomposition.IncrementalPCA,
217

sklearn.decomposition.KernelPCA,
218-219, 221

sklearn.decomposition.PCA, 214

sklearn.ensemble.AdaBoostClassifier, 195

sklearn.ensemble.BaggingClassifier, 186-189

sklearn.ensemble.GradientBoostingRegres-
sor, 196, 198-199

sklearn.ensemble.RandomForestClassifier,
92,95, 184

sklearn.ensemble.RandomForestRegressor,
70, 72-74, 189-190, 196

sklearn.ensemble.VotingClassifier, 184

sklearn.externals.joblib, 71

sklearn.linear_model.ElasticNet, 132

sklearn.linear_model.Lasso, 132

sklearn.linear_model.LinearRegression,
20-21, 62, 68, 110, 120, 122, 124-125

sklearn.linear_model.LogisticRegression,
137,139, 141, 184, 219

sklearn.linear_model.Perceptron, 259

sklearn.linear_model.Ridge, 129

sklearn.linear_model.SGDClassifier, 82

sklearn.linear_model.SGDRegressor,
119-120, 129, 132-133
sklearn.manifold.LocallyLinearEmbedding,
221-222
sklearn.metrics.accuracy_score(), 184, 188,
264
sklearn.metrics.confusion_matrix(), 85, 96
sklearn.metrics.f1_score(), 87, 100
sklearn.metrics.mean_squared_error(),
68-69, 76, 124, 133, 198-199, 221
sklearn.metrics.precision_recall_curve(), 88
sklearn.metrics.precision_score(), 86, 90
sklearn.metrics.recall_score(), 86, 90
sklearn.metrics.roc_auc_score(), 92-93
sklearn.metrics.roc_curve(), 91-92
sklearn.model_selection.cross_val_pre-
dict(), 84, 88, 92, 96, 100
sklearn.model_selection.cross_val_score(),
69-70, 83-84
sklearn.model_selection.GridSearchCV,
72-74,77,96, 179, 219
sklearn.model_selection.StratifiedKFold, 83
sklearn.model_selection.StratifiedShuffleS-
plit, 52
sklearn.model_selection.train_test_split(),
50, 69, 124, 178, 198
sklearn.multiclass.OneVsOneClassifier, 95
sklearn.neighbors.KNeighborsClassifier,
100, 102
sklearn.neighbors.KNeighborsRegressor, 22
sklearn.pipeline.FeatureUnion, 66
sklearn.pipeline.Pipeline, 66, 125, 148-149,
219
sklearn.preprocessing.Imputer, 60, 66
sklearn.preprocessing.LabelBinarizer, 64, 66
sklearn.preprocessing.LabelEncoder, 62
sklearn.preprocessing.OneHotEncoder, 63
sklearn.preprocessing.PolynomialFeatures,
122-123, 125, 128, 149
sklearn.preprocessing.StandardScaler,
65-66, 96, 114, 128, 146, 148-150, 152,
237,264
sklearn.svm.LinearSVC, 147-149, 153-154,
156, 165
sklearn.svm.LinearSVR, 155-156
sklearn.svm.SVC, 148, 150, 152-154, 156,
165, 184
sklearn.svm.SVR, 77, 156
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sklearn.tree.DecisionTreeClassifier, 173,
179, 186-187, 189, 195
sklearn.tree.DecisionTreeRegressor, 69, 167,
175, 195-196

sklearn.tree.export_graphviz(), 168
StandardScaler, 114, 237, 264
SVM classification classes, 154
TELearn, 231
user guide, xvi

score(), 62

search space, 74, 270

second-order partial derivatives (Hessians), 300

self-organizing maps (SOMs), 521-523

semantic hashing, 434

semisupervised learning, 13

sensitivity, 85, 91

sentiment analysis, 379

separable_conv2d(), 376

sequences, 379

sequence_length, 387-388, 409

Shannon's information theory, 172

shortcut connections, 372

show(), 48

show_graph(), 245

shrinkage, 197

shuffle_batch(), 341

shuffle_batch_join(), 341

sigmoid function, 134

sigmoid_cross_entropy_with_logits(), 428

similarity function, 151-152

simulated annealing, 118

simulated environments, 442
(see also OpenAI Gym)

Singular Value Decomposition (SVD), 213

skewed datasets, 84

skip connections, 310, 372

slack variable, 158

smoothing terms, 283, 297, 299, 430

soft margin classification, 146-148

soft placements, 321

soft voting, 184

softmax function, 139, 263, 264

Softmax Regression, 139-142

source ops, 236, 322

spam filters, 3-6, 8

sparse autoencoders, 426-428

sparse matrix, 63

sparse models, 130, 300

sparse_softmax_cross_entropy_with_logits(),
268

sparsity loss, 426

specificity, 91

speech recognition, 6

spurious patterns, 516

stack(), 385

stacked autoencoders, 415-424
TensorFlow implementation, 416
training one-at-a-time, 418-420
tying weights, 417-418
unsupervised pretraining with, 422-424
visualizing the reconstructions, 420-421

stacked denoising autoencoders, 422, 424

stacked denoising encoders, 424

stacked generalization (see stacking)

stacking, 200-202

stale gradients, 348

standard correlation coefficient, 55

standard deviation, 37

standardization, 65

StandardScaler, 66, 237, 264

state-action values, 456

states tensor, 388

state_is_tuple, 398, 401

static unrolling through time, 385-386

static_rnn(), 385-386, 409

stationary point, 503-505

statistical mode, 185

statistical significance, 174

stemming, 103

step functions, 257

step(), 443

Stochastic Gradient Boosting, 199

Stochastic Gradient Descent (SGD), 117-119,
148, 260
training, 136

Stochastic Gradient Descent (SGD) classifier,
82,129

stochastic neurons, 516

stochastic policy, 440

stratified sampling, 51-53, 83

stride, 357

string kernels, 153

string_input_producer(), 341

strong learners, 182

subderivatives, 164

subgradient vector, 131

subsample, 199, 363
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supervised learning, 8-9
Support Vector Machines (SVMs), 94, 145-166
decision function and predictions, 156-157
dual problem, 503-505
kernelized SVM, 161-164
linear classification, 145-148
mechanics of, 156-165
nonlinear classification, 149-154
online SVMs, 164-165
Quadratic Programming (QP) problems,
159-160
SVM regression, 154-165
the dual problem, 160
training objective, 157-159
support vectors, 146
svd(), 213
symbolic differentiation, 238, 508-509
synchronous updates, 348

T
t-Distributed Stochastic Neighbor Embedding
(t-SNE), 224
tail heavy, 48
target attributes, 48
target_weights, 409
tasks, 323
Temporal Difference (TD) Learning, 457-458
tensor processing units (TPUs), 315
TensorBoard, 231
TensorFlow, 229-252
about, xiv
autodiff, 238-239, 507-513
Batch Normalization with, 284-286
construction phase, 234
control dependencies, 323
convenience functions, 341
convolutional layers, 376
convolutional neural networks and, 360-362
data parallelism and, 351
denoising autoencoders, 425-425
dropout with, 306
dynamic placer, 318
execution phase, 234
feeding data to the training algorithm,
239-241
Gradient Descent with, 237-239
graphs, managing, 234
initial graph creation and session run,
232-234

installation, 232
11 and 12 regularization with, 303
learning schedules in, 302
Linear Regression with, 235-236
max pooling layer in, 364
max-norm regularization with, 307
model zoo, 291
modularity, 246-248
Momentum optimization in, 295
name scopes, 245
neural network policies, 446
NLP tutorials, 405, 408
node value lifecycle, 235
operations (ops), 235
optimizer, 239
overview, 229-231
parallel distributed computing (see parallel
distributed computing with TensorFlow)
Python API
construction, 265-269
execution, 269
using the neural network, 270
queues (see queues)
reusing pretrained layers, 287-288
RNNs in, 384-388
(see also recurrent neural networks
(RNNs))
saving and restoring models, 241-242
sharing variables, 248-251
simple placer, 318
sklearn.metrics.accuracy_score(), 286
sparse autoencoders with, 427
and stacked autoencoders, 416
TensorBoard, 242-245
tf.abs(), 303
tf.add(), 246, 303-304
tf.add_n(), 247-248, 250-251
tf.add_to_collection(), 308
tf.assign(), 237, 288, 307-308, 482
tf.bfloat16, 350
tf.bool, 284, 306
tf.cast(), 268, 391
tf.clip_by_norm(), 307-308
tf.clip_by_value(), 286
tf.concat(), 312, 369, 446, 450
tf.ConfigProto, 317, 320-321, 345, 487
tf.constant(), 235-237, 319-320, 323,
325-326
tf.constant_initializer(), 249-251
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tf.container(), 328-330, 351-352, 481

tf.contrib.framework.arg_scope(), 285, 416,
430

tf.contrib.layers.batch_norm(), 284-285

tf.contrib.layers.convolution2d(), 463

tf.contrib.layers.fully_connected(), 267

tf.contrib.layers.11_regularizer(), 303, 308

tf.contrib.layers.12_regularizer(), 303,
416-417

tf.contrib.layers.variance_scaling_initial-
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tf.contrib.learn. DNNClassifier, 264

tf.contrib.learn.infer_real_valued_col-
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tf.contrib.rnn.BasicLSTMCell, 401, 403

tf.contrib.rnn.BasicRNNCell, 385-387, 390,
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tf.contrib.rnn.DropoutWrapper, 399

tf.contrib.rnn.GRUCell, 405

tf.contrib.rnn.LSTMCell, 403

tf.contrib.rnn.MultiRNNCell, 397-399
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392-394

tf.contrib.rnn.RNNCell, 398

tf.contrib.rnn.static_rnn(), 385-387,
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tf.contrib.slim.nets module (nets), 377

tf.control_dependencies(), 323

tf.decode_csv(), 336, 340

tf.device(), 319-321, 326-327, 397-398

tf.exp(), 430-431

tf. FIFOQueue, 330, 332-333, 336, 340

tf.float32, 236, 482

tf.get_collection(), 288-289, 304, 308, 416,
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tf.get_default_graph(), 234, 242

tf.get_default_session(), 233

tf.get_variable(), 249-251, 288, 303-308

tf.global_variables(), 308

tf.global_variables_initializer(), 233, 237

tf.gradients(), 238

tf.Graph, 232, 234, 242, 335, 343

tf.GraphKeys. REGULARIZATION_LOS-
SES, 304, 416

tf.GraphKeys. TRAINABLE_VARIABLES,
288-289, 463

tf.group(), 464

tf.int32, 321-332, 337, 387, 390, 406, 466

tf.int64, 265

tf.InteractiveSession, 233

TELearn, 264

tf.log(), 427,430, 446, 450

tf.matmul(), 236-237, 246, 265, 384, 417,
420, 425, 427-428

tf.matrix_inverse(), 236

tf.maximum(), 246, 248-251, 281

tf.multinomial(), 446, 450
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267-268, 419-420

tf.nn.conv2d(), 360-361

tf.nn.dynamic_rnn(), 386-387, 390, 392,
395, 397-399, 409-410, 491-492

tf.nn.elu(), 281, 416-417, 430, 446, 450

tf.nn.embedding lookup(), 406
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tf.nn.max_pool(), 364-365

tf.nn.relu(), 265, 392-393, 395, 463

tf.nn.sigmoid_cross_entropy_with_logits(),
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tf.nn.sparse_soft-
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tf.one_hot(), 466

tf.PaddingFIFOQueue, 334

tf.placeholder(), 239-240, 482

tf.placeholder_with_default(), 425

tf.RandomShuffleQueue, 333, 337-338,
340-341

tf.random_normal(), 246, 384, 425, 430

tf.random_uniform(), 237, 241, 406, 482

tf.reduce_mean(), 237, 245, 267-268, 303,
390-391, 414, 416, 418, 420, 425, 427,
466

tf.reduce_sum(), 303, 427-428, 430-431,
465-466

tf.reset_default_graph(), 234

tf.reshape(), 395, 463

tf.RunOptions, 345

tf.Session, 233, 482

tf.shape(), 425, 430

tf.square(), 237, 245, 393, 414, 416, 418, 420,
425,427, 430-431, 466

tf.stack(), 336, 340, 386

tf.string, 336, 340

tf.summary.FileWriter, 242-243
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tf.tanh(), 384
tf. TextLineReader, 336, 340
tf.to_float(), 449-450
tf.train. AdamOptimizer, 293, 299, 390, 393,
414, 416-417, 419,427, 431, 449-450, 466
tf.train.ClusterSpec, 324
tf.train.Coordinator, 338-340
tf.train.exponential_decay(), 302
tf.train.GradientDescentOptimizer, 239,
268, 286, 293, 295
tf.train.MomentumOptimizer, 239, 295-296,
302, 311, 351, 485-486
tf.train.QueueRunner, 338-341
tf.train.replica_device_setter(), 327-328
tf.train.RMSPropOptimizer, 298
tf.train.Saver, 241-242, 268, 377, 399, 450,
466
tf.train.Server, 324
tf.train.start_queue_runners(), 341
tf.transpose(), 236-237, 386, 417
tf.truncated_normal(), 265
tf.unstack(), 385-387, 395, 492
tf.Variable, 232, 482
tf.variable_scope(), 249-251, 288, 307-308,
328, 391, 463
tf.zeros(), 265, 384, 417
truncated backpropagation through time,
400
visualizing graph and training curves,
242-245
TensorFlow Serving, 343
tensorflow.contrib, 267
test set, 29, 49-53, 81
testing and validating, 29-31
text attributes, 62-64
TextLineReader, 336
TF-slim, 231
TELearn, 231, 264
thermal equilibrium, 518
thread pools (inter-op/intra-op, in TensorFlow,
322
threshold variable, 248-251
Tikhonov regularization, 127
time series data, 379
toarray(), 63
tolerance hyperparameter, 154
trainable, 288
training data, 4
insufficient quantities, 22

irrelevant features, 25
loading, 335-342
nonrepresentative, 24
overfitting, 26-28
poor quality, 25
underfitting, 28
training instance, 4
training models, 20, 105-143
learning curves in, 123-127
Linear Regression, 105, 106-121
Logistic Regression, 134-142
overview, 105-106
Polynomial Regression, 106, 121-123
training objectives, 157-159
training set, 4, 29, 53, 60, 68-69
cost function of, 135-136
shuffling, 81
transfer learning, 286-293
(see also pretrained layers reuse)
transform(), 61, 66
transformation pipelines, 66-68
transformers, 61
transformers, custom, 64-65
transpose(), 385
true negative rate (TNR), 91
true positive rate (TPR), 85, 91
truncated backpropagation through time, 400
tuples, 332
tying weights, 417

U
underfitting, 28, 68, 152
univariate regression, 37
unstack(), 385
unsupervised learning, 10-12
anomaly detection, 12
association rule learning, 10, 12
clustering, 10
dimensionality reduction algorithm, 12
visualization algorithms, 11
unsupervised pretraining, 291-292, 422-424
upsampling, 376
utility function, 20

v

validation set, 30

Value Iteration, 455
value_counts(), 46
vanishing gradients, 276
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(see also gradients, vanishing and explod-
ing)

variables, sharing, 248-251
variable_scope(), 249-250
variance

bias/variance tradeoff, 126
variance preservation, 211-212
variance_scaling_initializer(), 278
variational autoencoders, 428-432
VGGNet, 375
visual cortex, 354
visualization, 242-245
visualization algorithms, 11-12
voice recognition, 353
voting classifiers, 181-184

W

warmup phase, 349
weak learners, 182

weight-tying, 417
weights, 267, 288

freezing, 289
while_loop(), 387
white box models, 170
worker, 324
worker service, 325
worker_device, 327
workspace directory, 40-43

X

Xavier initialization, 276-279
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YouTube, 253

z

zero padding, 356, 361
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Colophon

The animal on the cover of Hands-On Machine Learning with Scikit-Learn and Ten-
sorFlow is the far eastern fire salamander (Salamandra infraimmaculata), an amphib-
ian found in the Middle East. They have black skin featuring large yellow spots on
their back and head. These spots are a warning coloration meant to keep predators at
bay. Full-grown salamanders can be over a foot in length.

Far eastern fire salamanders live in subtropical shrubland and forests near rivers or
other freshwater bodies. They spend most of their life on land, but lay their eggs in
the water. They subsist mostly on a diet of insects, worms, and small crustaceans, but
occasionally eat other salamanders. Males of the species have been known to live up
to 23 years, while females can live up to 21 years.

Although not yet endangered, the far eastern fire salamander population is in decline.
Primary threats include damming of rivers (which disrupts the salamander’s breed-
ing) and pollution. They are also threatened by the recent introduction of predatory
fish, such as the mosquitofish. These fish were intended to control the mosquito pop-
ulation, but they also feed on young salamanders.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood's Illustrated Natural History. The cover fonts are URW
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